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a b s t r a c t

This paper studies the asymptotic power of the likelihood ratio test (LRT) for the identity
test when the dimension p is large compared to the sample size n. The asymptotic
distribution under local alternatives is derived and a simulation study is carried out to
compare LRT with other tests. All these studies show that LRT is a powerful test to detect
small eigenvalues.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Inmultivariate analysis for high dimensional data, testing the structure of population covariancematrices is an important
problem. See, for example, Johnstone (2001), Ledoit and Wolf (2002), Srivastava (2005), Schott (2006), Chen et al. (2010),
Cai and Jiang (2011) and Li and Chen (2012), among others. To specify the problem considered here, let X1, . . . , Xn be n
independent and identically distributed (i.i.d.) from a multivariate normal distribution Np(µp, Σp) where µp is the mean
vector and Σp is the population covariance matrix. In many studies, a hypothesis test of significant interest is to test

H0 : Σp = Ip vs. H1 : Σp ≠ Ip, (1.1)

where Ip is the p-dimensional identity matrix. Note that the identity matrix in (1.1) can be replaced by any other positive
definite matrix Σ0 through multiplying the data by Σ

−1/2
0 .

To test (1.1), we usually need the sample covariance matrix which is defined as

Sn =
1

n − 1

n
k=1

(Xk − X̄)(Xk − X̄)′,

where X̄ =
1
n

n
k=1 Xk. The likelihood ratio test (LRT) can be defined as

Tn = tr(Sn) − log |Sn| − p, (1.2)
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and when p is fixed and n tends to infinity, nTn converges to a chi-squared distribution with p(p + 1)/2 degrees of freedom
underH0 (Anderson, 2003). For high dimensional data (p is large), the failure of classical LRT was first observed by Dempster
(1958) and later in a pioneer work by Bai et al. (2009), authors proposed corrections to LRT when p/n → c ∈ (0, 1) and
µp = 0. Successive works included Jiang et al. (2012) which extended the results of Bai et al. (2009) to Gaussian data with
generalµp and our work (Wang et al., 2013) where we studied the LRT for generalµp and non-Gaussian data. About the LRT
for other related problems, see also two recent works by Jiang and Yang (2013) and Wang and Yao (2013).

As we know, the existing results about LRT (Bai et al., 2009; Jiang et al., 2012; Wang et al., 2013) in high dimensional
data have only derived asymptotic null distribution and we know little about the asymptotic point-wise power of LRT
under the alternative hypothesis. In this work, we will consider the asymptotic distribution of LRT when Σp ≠ Ip but
tr(Σp − Ip)2 = o(p). From these results, we find that LRT is powerful to detect eigenvalues around zero. Simulations will
also be conducted to compare LRT with two other tests proposed by Chen et al. (2010) and Cai and Ma (2013).

The rest of the paper is organized as follows. Section 2 introduces the basic data structure and establishes the asymptotic
power of LRT while Section 3 reports simulation studies. All the proofs are included in Appendix.

2. Main results

To relax the Gaussian assumptions, we assume that the observations X1, . . . , Xn satisfy a multivariate model (Chen et al.,
2010)

Xi = Σ1/2
p Yi + µp, for i = 1, . . . , n, (2.3)

whereµp is a p-dimensional constant vector and the entries ofYn = (Yij)p×n = (Y1, . . . , Yn) are i.i.d. with EYij = 0, EY 2
ij = 1

and EY 4
ij = 3 + ∆.

When yn = p/n < 1, Bai et al. (2009) proposed a correction to the classic LRT and redefined LRT as

Ln =
1
p
tr(Sn) −

1
p
log |Sn| − 1 − d(yn), (2.4)

where d(x) = 1 + (1/x − 1) log(1 − x), 0 < x < 1. Under the null hypothesis, Bai et al. (2009) derived the asymptotic
distribution of Ln for Gaussian data with known means. Our previous work (Wang et al., 2013) extended this result to the
multivariate model (2.3) which can accommodate unknown means and non-Gaussian data and the following is the details
of the main results in Wang et al. (2013).

Theorem 2.1 (Theorem 2.1 of Wang et al., 2013).When Σp = Ip and yn = p/n → y ∈ (0, 1),

pLn − µn

σn

D
→ N(0, 1),

where µn = yn(∆/2 − 1) − 3/2 log(1 − yn), σ 2
n = −2yn − 2 log(1 − yn) and

D
→ denotes convergence in distribution.

When X1, . . . , Xn are i.i.d. distributed fromNp(µp, Σp), Jiang et al. (2012) derived a similar result as Theorem 2.1 by using
the Selberg integral and they also considered the special situationwhere p/n → 1. Based on the asymptotic normality under
the respective null hypothesis, an asymptotic level α test based on Ln is given by

φ = I

pLn − µn

σn
> z1−α


, (2.5)

where I(·) is the indicator function, and z1−α denotes the 100 × (1 − α)th percentile of the standard normal distribution.
In the classical LRT test, if Sn be seen as the estimator of Σp, LRT actually is an estimator for

R(Σp) = tr(Σp) − log |Σp| − p, (2.6)

which can be regarded as a special case of Stein’s loss function (James and Stein, 1961). Denoting the eigenvalues of Σp as
u1 ≥ · · · ≥ up > 0, we have

R(Σp) =

p
k=1

(uk − log uk − 1), (2.7)

which is 0 when Σp = Ip and positive when Σp ≠ Ip. In the following theorem, we establish the convergence of Ln under
the local alternatives where tr(Σp − Ip)2 = o(p).

Theorem 2.2. When tr(Σp − Ip)2/p → 0 and yn = p/n → y ∈ (0, 1),

pLn − R(Σp) − µn

σn

D
→ N(0, 1).
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