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a b s t r a c t

This paper proposes a procedure to obtainmonotone estimates of both the local and the tail
false discovery rates that arise in large-scale multiple testing. The proposed monotoniza-
tion is asymptotically optimal for controlling the false discovery rate and also has many
attractive finite-sample properties.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The advance of modern high-throughput technologies in many scientific disciplines such as genomics and brain imaging
has dramatically increased both the size and the dimension of the data and made data analysis a major challenge. In
particular, it is often required to test thousands or millions of hypotheses simultaneously when analyzing large-scale, high-
dimensional data. Unlike the case of testing a single hypothesis, type I error in multiple hypothesis testing is not uniquely
defined. Traditional approaches, e.g., the family-wise error rate (FWER), are far too conservative and produce many false
negatives in high-dimensional settings. For this reason, the concept of a false discovery rate (FDR), or the expectedproportion
of false positives among declared positives, is introduced and now widely accepted.

The FDR is originally proposed by Benjamini and Hochberg (1995), who developed a stepwise procedure to control the
FDR. Storey (2002) proposes to estimate the FDR of a fixed rejection region and introduces the q-value, which is the mini-
mum FDR level to reject the null hypothesis given observed data. Both the Benjamini–Hochberg procedure and the q-value
assume independence among the summarizing statistics. Unfortunately the independence assumption rarely holds in prac-
tice; hence often discrepancy appears between the theoretical and the observed distributions of the summarizing statistics.
For this reason, Efron has recently introduced an empirical Bayes (EB) procedure based on a two-groupmixturemodel (Efron,
2004, 2007a,b). The EB procedure uses the z-values instead of the p-values and fits themusing the two-groupmixturemodel.
The EB framework introduces two variants of the FDR: the local FDR, denoted by ‘‘fdr’’, is the ratio of the null sub-density
to the marginal mixture density of the two-group model; the tail FDR, denoted by ‘‘Fdr’’, is the ratio of the null sub-survival
function (tail probability) to the marginal survival function. The EB procedure estimates the null and the marginal mixture
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distributions from the data. Hence it takes into account the dependence among test statistics. The estimated null distribution
is referred to as the empirical null.

The main theme of this paper is monotonicity in the FDR. Monotonicity is desirable in many settings as it maintains
the order of the observed test statistics. In particular, we show that the monotonicity condition for the local FDR implies
the monotone likelihood ratio condition (MLRC) of Sun and Cai (2007),1 under which the local FDR yields the optimal
oracle decision rule. We then show that a monotone estimate of the local FDR results in a data-driven decision rule that
is, under some regularity conditions, asymptotically optimal. Furthermore, we prove that a monotone estimate of the local
FDR satisfies the MLRC in finite-sample settings, which by itself is desirable in practice.

Despite many attractive features of monotonicity, unfortunately, few existing procedures to estimate fdr or Fdr take
monotonicity into account. Broberg (2005) investigates the use of the monotone FDR in the setting that the theoretical null
distribution of p-values is uniformon [0, 1]. In this setting,monotonicity of fdr (resp. Fdr) is equivalent to that of themarginal
density function (resp. themarginal survival function).Monotonicity is enforced by estimating themarginal density function
(resp. the marginal survival function) under appropriate constraints, either parametrically or non-parametrically. A similar
procedure is employed by Strimmer (2008). For more flexible EB procedures (Efron, 2007a,b), however, one has to estimate
both the null and the marginal distributions. We undertake to see how to impose monotonicity in this setting.

We begin with a review of the empirical Bayes theory of the false discovery rate. In Section 3, attractive statistical
properties of the monotone FDR are discussed. We show that monotonicity in the local FDR is equivalent to that in the
likelihood ratio of the components of the two-group mixture model and implies that of the tail FDR. After proving the
claims made above, we propose a procedure that ensures monotonicity in the estimates of the local and the tail FDRs and
that naturally leads to an adaptive decision rule using themonotonized estimates. In Section 4,we conduct a numerical study
to demonstrate that themonotonized FDR can improve the performance of the FDR estimates. In Section 5, we illustrate that
the proposed procedure can improve real-world data analyses. Section 6 concludes the paper.

2. Empirical Bayes theory of false discovery rates

This section reviews the empirical Bayes theory of false discovery rate inference, largely developed by Efron (2004,
2007a,b).

Suppose we have a collection of N hypotheses and their corresponding ‘‘summarizing statistics’’ T1, . . . , TN . Assume that
Tis have a common marginal distribution whose density is of the two-group mixture form:

f (t) = p0f0(t)+ p1f1(t), (1)

where f0(t) and f1(t) are the null and the non-null densities, respectively; p0 is the proportion of the null group, and
p1 = 1 − p0. We define the null sub-density as p0f0(t). The local false discovery rate (denoted by fdr) and the right tail
FDR (denoted by Fdr) at t are, respectively, defined as

fdr(t) =
p0f0(t)
f (t)

and Fdr(t) =
p0S0(t)

p0S0(t)+ p1S1(t)
, (2)

where S0(t) and S1(t) are the survival functions of the null and the non-null groups, respectively. Note that the tail FDR
corresponds to one-sided hypotheses toward the positive side, and the other direction or the left tail counterpart can be
similarly defined.

Knowledge of the null density f0(t) plays a crucial role in the inference regarding fdr and Fdr. The null distribution of
the test statistics for single hypothesis testing is often known theoretically, e.g., standard normal, Student’s t , or chi-square.
However, in multiple hypothesis testing, the observed test statistics often do not follow the theoretical null distribution.
This phenomenon may be due to failed assumptions, unobserved covariates, correlations among the samples or among the
test statistics (Efron, 2007b).

To remedy this problem, several authors advocate a family of empirical Bayes procedures, referred to as the empirical
null method (Efron, 2007a,b; Schwartzman, 2008). This method estimates the null distribution from the data itself. For N
sufficiently large, the components of the mixture density (1) can be estimated under a certain set of assumptions. These
assumptions include that f0(t) is unimodal, and that the most of the probability mass around the peak of f (t) is due to the
null sub-density p0f0(t). Therefore, a reliable estimation of f0(t) and p0 is very important for accurate inference of the FDRs
discussed above.

To estimate f (t), f0(t), and p0, Efron (2007b) proposes two methods, named ‘‘central matching’’ and ‘‘MLE fitting’’. First,
central matching is a two-step procedure. At step 1, the mixture density f (t) is modeled as a semi-parametric exponential
family, e.g., f (t) = cβ exp

7
j=1 βjt j


, where cβ is a normalization constant. Subsequently the N test statistics are binned

into K bins with equal width ∆ centered at t1, t2, . . . , tK . Let yk be the count in bin k. Then the parameters {βj} are fitted
to {yk} using Lindsey’s method (Lindsey, 1974). At step 2, f0(t) is fit to the estimated f (t) around t = 0. Assuming f0(t) is a
normal density, the parameters (mean and variance) for f0(t) are estimated by least squares. Second, MLE fitting undertakes

1 Sun and Cai (2007) call the condition ‘‘SMLR’’, without spelling out what it abbreviates. Later they refer to the same condition as ‘‘MLRC’’, while
identifying that ‘‘SMLR’’ stands for the ‘‘symmetric monotone likelihood ratio’’ (personal communications with Wenguang Sun, 2013).
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