

Statistics & Probability Letters 76 (2006) 1164-1169

www.elsevier.com/locate/stapro

An asymptotic estimate for Brownian motion with drift

Paul McGill

Département de Mathématiques, Université Claude Bernard Lyon I, 69622 Villeurbanne, France

Received 21 September 2004; received in revised form 22 November 2005 Available online 5 January 2006

Abstract

We apply an Abelian theorem, due to Berg, to determine the asymptotic behaviour of $\mathbb{P}[\xi_t > x]$ as $x^2t^{-1} - \gamma'x \uparrow \infty$ when ξ is the range of Brownian motion with positive drift $\gamma < \gamma'$. The method is simple, general, and yields a sharp error bound.

© 2006 Elsevier B.V. All rights reserved.

MSC: primary 60J65; secondary 41A60; 34B24

Keywords: Tauberian theorem; Brownian motion; Hitting times

Notation: All processes start at zero: B is Brownian motion, X^{\bullet} (resp. X°) denotes the maximum (resp. minimum) of X, while C, C'... represent generic strictly positive constants. We always take $\tau = t/x^2 \downarrow 0$.

In Daudin et al. (2003) the authors obtain a large deviation estimate for the range of Brownian motion with positive drift. This is the process $\xi = \xi^{(\gamma)} = (X - X^{\circ})^{\bullet}$, where $X_t = B_t + \gamma t$, and they find

$$\mathbb{P}[\xi_1 > x] \sim \frac{2}{x} \sqrt{\frac{2}{\pi}} e^{-(x-\gamma)^2/2}, \quad x \uparrow \infty. \tag{1}$$

Their paper offers two *ad hoc* proofs: one using special functions, another via path decomposition of ξ . Here we point out that (1) follows from an Abelian theorem formulated by Berg (1974) Section 49 pp. 112–113. This was applied by Csáki (1989) to a problem with Brownian scaling but our result illustrates its wider utility. The statement is as follows.

Theorem. $\exists G \text{ holomorphic on } \Re(z) > \gamma x > 0 \text{ such that for any constant } \gamma' > \gamma$

$$\mathbb{P}[\xi_t > x] = \frac{1}{\sqrt{2\tau\pi}} e^{-(1-\tau\gamma x)^2/2\tau} G(1/2\tau)(1 + O(\tau))$$

$$= 2\sqrt{\frac{2\tau}{\pi}} \frac{e^{-(1-\tau\gamma x)^2/2\tau}}{(1-\tau\gamma x)(1+\tau\gamma x)^2} (1 + O(\tau)), \quad \tau^{-1} - \gamma' x \uparrow \infty,$$
(2)

with error constant independent of x.

0167-7152/\$- see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.spl.2005.12.023

The proof is deferred. We remark that this is a Tauberian theorem since G, given explicitly at (10) below, is related to the Laplace transform computed by Williams (1976):

$$\int_0^\infty e^{-zt} \mathbb{P}[\xi_t > x] dt = \frac{\mu e^{\gamma x}}{z[\mu \cosh \mu x + \gamma \sinh \mu x]}, \quad \mu = \sqrt{2z + \gamma^2}.$$
 (3)

Applying Berg's theorem directly to (3) gives (2) for x fixed and $t \downarrow 0$, but to obtain our more general statement, and its immediate corollary (1), we must control the error as x varies. For this, we rework the proof of Berg's result starting from the following elementary observation (cf. Berg (1974) 49.3).

Lemma. Let G be holomorphic on $\Re z > \rho_0 > 0$, and suppose there exist $\alpha \ge 0$, $\beta > 1$, and $\eta > \frac{1}{2}$ such that for all $\rho > \rho_0$ we have:

$$|G(\rho + iu)e^{-\alpha|u|/\sqrt{\rho}}| \leq C_{A,\alpha}|G(\rho)|$$
 uniformly in $|u| \geq \rho^{\eta}$ (A_{\alpha})

$$|G''(\rho + iu)| \leq C_{B,\beta}|\rho^{-\beta}G(\rho)| \quad \text{uniformly in } |u| \leq \rho^{\eta}. \tag{B_{\beta}}$$

Then

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} G(\rho + i\sqrt{\rho}u) e^{-u^2} du = G(\rho)(1 + O(\rho^{1-\beta})), \quad \rho \uparrow \infty.$$
 (4)

Proof. We prove (4) in the form

$$\frac{1}{\sqrt{\pi\rho}} \int_{-\infty}^{\infty} [G(\rho + iu) - G(\rho)] e^{-u^2/\rho} du = O(\rho^{1-\beta} G(\rho)), \quad \rho \uparrow \infty,$$

in two steps. First, we can ignore the contribution from $\mathbb{R}\setminus(-\rho^{\eta},\rho^{\eta})$ since (e.g.)

$$\begin{split} \left| \frac{1}{\sqrt{\rho}} \int_{\rho^{\eta}}^{\infty} G(\rho + iu) e^{-u^{2}/\rho} du \right| &\leq C_{A,\alpha} |G(\rho)| \int_{\rho^{\eta}}^{\infty} e^{\alpha u/\sqrt{\rho}} e^{-u^{2}/\rho} \frac{du}{\sqrt{\rho}} \\ &= C_{A,\alpha} |G(\rho)| e^{\alpha^{2}/4} \int_{\rho^{\eta - 1/2}}^{\infty} e^{-(u - 1/2\alpha)^{2}} du = o(|G(\rho)| e^{-(1/2)\rho^{2\eta - 1}}). \end{split}$$

Next, using Taylor expansion and (B_{β}) , we obtain

$$\frac{1}{\sqrt{\pi\rho}} \int_{-\rho^{\eta}}^{\rho^{\eta}} |G(\rho + iu) - G(\rho)| e^{-u^{2}/\rho} du \leq \frac{\rho}{\sqrt{\pi}} \sup_{|u| \leq \rho^{\eta}} |G''(\rho + iu)| \int_{0}^{\rho^{\eta - 1/2}} u^{2} e^{-u^{2}} du
\leq \frac{C_{B,\beta}}{\sqrt{\pi}} |G(\rho)| \rho^{1-\beta} \int_{0}^{\infty} u^{2} e^{-u^{2}} du = \frac{C_{B,\beta}}{4} |G(\rho)| \rho^{1-\beta}. \qquad \Box$$

- **Remarks 5.** (1) For $\rho \geqslant \rho_0(\alpha, \eta, C_{A,\alpha})$ the error constant in (4) is bounded by $\frac{1}{2}C_{B,\beta}$. (2) If G is real on $[\rho_0, \infty)$ then E = G'/G = o(1). For if $\inf_{\rho \geqslant \rho_0} E_{\rho}^2 \geqslant \delta > 0$ then, from $|E' + E^2| = |G''/G| \leqslant C_{B,\beta}\rho^{-\beta}$, we deduce $E' \leqslant -\frac{1}{2}E^2$ eventually and hence $E \downarrow 0$. This contradiction shows $E_{\rho_n}^2 \downarrow_n 0$ for some $\rho_n \uparrow \infty$ and, applying the above bound whenever E' > 0, we obtain $\sup_{\rho \geqslant \rho_n} E_{\rho}^2 \leqslant \max(E_{\rho_n}^2, C_{B,\beta}\rho_n^{-\beta}) = o(1)$. (3) Given $\varepsilon > 0$, we deduce existence of $\rho_\varepsilon \geqslant \rho_0$ such that $|G(\rho)| \leqslant |G(\rho_\varepsilon)| e^{\varepsilon \rho}$ if $\rho \geqslant \rho_\varepsilon$.
- (4) One may assume $\frac{1}{2} < \eta < 1$ provided G is real on $[\rho_0, \infty)$ and $\alpha > 0$. In fact, by Taylor expansion, remark (2), and condition (B_{β}) , we have

$$G(\rho + iu) = G(\rho) + iuG'(\rho) - \frac{1}{2}u^2G''(\rho + i\theta_u u) = O(\rho^{2\eta}G(\rho))$$

uniformly in $u < \rho^{\eta}$; so for $\frac{1}{2} < \eta' < 1 \le \eta$ and any $\varepsilon > 0$

$$|G(\rho + iu)| \le C\rho^{2\eta} G(\rho) \le Ce^{\varepsilon \rho^{\eta'-1/2}} G(\rho) \le Ce^{\varepsilon |u|/\sqrt{\rho}} G(\rho)$$

uniformly in $\rho^{\eta'} \leq |u| < \rho^{\eta}$ as $\rho \uparrow \infty$. Meaning (A_{α}) holds whenever $|u| \geq \rho^{\eta'}$, though perhaps with a larger constant.

Download English Version:

https://daneshyari.com/en/article/1154795

Download Persian Version:

https://daneshyari.com/article/1154795

Daneshyari.com