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a b s t r a c t

The multiset sampler (MSS) can be viewed as a new data augmentation scheme and it
has been applied successfully to a wide range of statistical inference problems. The key
idea of the MSS is to augment the system with a multiset of the missing components, and
construct an appropriate joint distribution of the parameters of interest and the missing
components to facilitate the inference based on Markov chain Monte Carlo. The standard
data augmentation strategy corresponds to the MSS with multiset size one. This paper
provides a theoretical comparison of the MSS with different multiset sizes. We show that
the MSS converges to the target distribution faster as the multiset size increases. This
explains the improvement in convergence rate for the MSS with large multiset sizes over
the standard data augmentation scheme.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In statistical inference, if the target distribution p(θ) is complicated, we often need to use Monte Carlo methods to draw
samples from p(θ) to make inference about certain features of the distribution, such as the mean of p(θ). This occurs very
often in Bayesian inference where the posterior distribution of the unknown parameters θ is of interest. If drawing samples
directly from p(θ) is not straightforward, sometimes we can consider an augmented system (θ, X), such that the marginal
distribution of p(θ, X) is the same as p(θ) and drawing samples from p(θ, x) is easier. In particular, if the augmented system
facilitates iterative conditional sampling from p(θ |x) and p(x|θ), the Gibbs sampler can be used to sample from the joint
distribution p(θ, x), and we only need to keep the samples of θ to make inference about the target distribution p(θ). This
is an application of the data augmentation scheme proposed by Tanner and Wong (1987) and further studied by Meng and
van Dyk (1999) and van Dyk and Meng (2001).

One of the areas that data augmentation schemes have been used extensively is population genetics. In this context
θ usually denotes the population parameters we want to estimate, such as the mutation rate, the population size of a
species, etc. A Bayesian approach seeks to characterize the posterior distribution of θ given the observed DNA sequence
data. However, this posterior distribution typically is not available in analytical forms, because it involves summing over a
huge number of possible underlying genealogical trees. One way to avoid the summation is to consider the joint posterior
distribution p(θ, t) of the parameters and the tree, whosemarginal distribution p(θ) is the target distribution. This is exactly
the data augmentation idea. If the conditional distributions p(θ |t) and p(t|θ) are difficult to sample from, one can use a
Metropolis-within-Gibbs algorithm ((Robert and Casella, 1999), pp. 322–323) to sample from p(θ, t). That is, one samples
iteratively from the distributions p(θ |t) and p(t|θ), but a Metropolis–Hastings step is used in each iteration to generate θ
and t .

Leman et al. (2007) notice that when they apply the data augmentation scheme to study the time since divergence
between two closely related species, the Metropolis-within-Gibbs algorithm for sampling (θ, t) converges very slowly,
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especially in the tree space. The acceptance rate for a new tree is extremely low, and the Markov chain can easily get stuck
in a local mode. Exploration of the tree space seems to be a common challenging problem for all genealogically-based data
augmentation approaches. Such convergence problems may also occur in applying the data augmentation idea to other
statistical inference problems besides population genetics.

To overcome this difficulty, Leman et al. (2007) develop a new data augmentation scheme, called the evolutionary forest
(EF) algorithm, which leads to an efficient Markov chain Monte Carlo (MCMC) scheme. The EF algorithm is also based on the
data augmentation idea, but it augments the system with multiple trees (i.e., a forest) rather than a single tree. Therefore
the updates of the population parameters are made on the basis of their likelihood over multiple trees. The EF algorithm
greatly increases the mixing of the Markov chain. Leman et al. (2007) show that their new EF algorithm converges to the
target distribution much faster than the standard MCMC algorithms on simulated and real data.

Leman et al.’s (2007) original EF algorithm is proposed in the context of population genetics, but the evolutionary forest
idea is a quite general way to design efficient algorithms. In fact, Leman et al. (2009) develop a general-purpose algorithm,
the multiset sampler (MSS), based on the EF algorithm, and apply the MSS to other statistical inference problems besides
population genetics.

In this paper, we provide a theoretical justification for the MSS and compare the convergence rate of the MSS with
different multiset sizes. We prove that the MSS with a larger multiset size converges to the target distribution faster. This
explains why the MSS performs better than the MCMC algorithm based on the standard data augmentation scheme which
corresponds to theMSSwithmultiset size one. In Section 2we briefly review theMSS. Themain theorems on the comparison
of the convergence rate are given in Section 3. Section 4 concludes the paper with a discussion.

2. The multiset sampler

Here we review the basic framework of the multiset sampler in Leman et al. (2009). Suppose our goal is to draw samples
from the target distribution p(θ). Assume that an augmented system (θ, X) is available to facilitate the sampling, and the
marginal distribution of θ under p(θ, x) is the target distribution p(θ). Sometimes X is referred to as the nuisance parameters
(Leman et al., 2009). For simplicity, assume X takes values in a finite set Ω with |Ω| = n. The standard data augmentation
scheme would sample from p(θ, x) and use the draws of θ to make inference about p(θ).

In the MSS, a new random variable YK is introduced which takes values in the set

ΩK =


K

i=1

xi : xi ∈ Ω


, (1)

where K a fixed positive integer. Here
K

i=1 xi is a multiset, which is an unordered collection that allows repeated elements.

For example, x1 ⊎ x2 ⊎ x1 = {x1, x1, x2}. Each y ∈ ΩK is called a multiset of size K . Obviously there are totally


n+K−1
K


multisets in ΩK . Define the joint distribution of (θ, YK ) as

qK (θ, y) = CK


x∈y

p(θ, x), (2)

where

CK =
n

n+K−1
K


K

is the normalizing constant. On the right hand side of (2), we sum over all components in y. For example, if K = 3 and
y = {x1, x1, x2}, then


x∈y p(θ, x) = 2p(θ, x1) + p(θ, x2). It is easy to verify that the marginal distribution of θ under

qK (θ, y) is still the same as the target distribution p(θ). Therefore we could sample from qK (θ, y) and keep the samples of θ
as draws from p(θ). This is the multiset sampler.

Note that when K = 1, the distribution q1(θ, y) is the same as p(θ, x), which means the standard data augmentation
scheme can be viewed as a special case of the multiset sampler with multiset size K = 1. Leman et al.’s (2007) numerical
results show that the MSS with K > 1 converges to the target distribution p(θ) faster than the MSS with K = 1. In the next
section, we provide a theoretical explanation for the performance of the MSS with different multiset sizes.

3. Convergence of multiset samplers

Assume that the Gibbs sampler can be used to draw samples from p(θ, x) and qK (θ, y) which are defined on the
augmented systems (θ, X) and (θ, YK ) in Section 2. In other words, we assume the corresponding conditional distributions
are easy to sample from. Then a systematic scan Gibbs sampler for sampling from p(θ, x) constructs a Markov chain
{(θ (i), x(i)), i = 0, 1, . . .} with transition function

K [(θ (i), x(i)), (θ (i+1), x(i+1))] = p(θ (i+1)
|x(i))p(x(i+1)

|θ (i+1)). (3)
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