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a b s t r a c t

We propose and study a kernel estimator of a density in which the kernel is adapted to the
data but not fixed. The smoothing procedure is followed by a location-scale transformation
to reduce bias and variance. The new method naturally leads to an adaptive choice of the
smoothing parameters which avoids asymptotic expansions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and main results

Since Rosenblatt (1956) and Parzen (1962) introduced the kernel estimator of an unknown density f , there have been
numerous authors who studied various of its finite and large sample properties. To bemore precise, let K be a given function
on the real line, the ‘‘kernel’’, and let h > 0 be a given bandwidth orwindow size. Then, if X1, . . . , Xn denotes an independent
sample from f , the associated kernel estimator is defined as

fn(x) =
1
nh

n−
j=1

K

x − Xj

h


.

To obtain a ‘‘bona fide’’ estimator, i.e., one which is itself a density, one requires

K ≥ 0 and
∫

K(u)du = 1.

Silverman (1986) and Wand and Jones (1995) became standard reference books on kernel methodology. To cite only one
of the many properties of fn(x), recall that for the mean square error (MSE), we have, when


uK(u)du = 0 and f is twice

continuously differentiable in a neighborhood of x, that

Biasfn(x) := Efn(x) − f (x)

=
1
2
f ′′(x)h2

∫
u2K(u)du + O(h3)

and

Var fn(x) =
1
nh

f (x)
∫

K 2(u)du + o


1
nh


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whenever n → ∞ and h → 0 such that nh → ∞. This implies that

MSE fn(x) = Bias2fn(x) + Var fn(x)

∼
1
4
(f ′′(x))2h4

[∫
u2K(u)du

]2
+

1
nh

f (x)
∫

K 2(u)du. (1.1)

The optimal choice of hminimizing the last expression satisfies

h5
opt ∼

1
n

f (x)

K 2(u)du

f ′′(x)

u2K(u)du

2 . (1.2)

If, rather than MSE fn(x) at a fixed x, one considers the integrated MSE as a measure of fit, i.e.,

MISE =

∫
MSE fn(x)dx,

then the optimal h satisfies, up to remainders,

h5
opt =

1
n


K 2(u)du

[f ′′(x)]2dx


u2K(u)du
2 . (1.3)

It is known, see Silverman (1986), that the choice of K has little effect onMSE andMISE. Rather, the unknown f (x) and f ′′(x)
are crucial and prevent one from a straightforward application of (1.2) or (1.3). One possibility is to choose a preliminary h1,
estimate f (x) and f ′′(x) and then compute an adapted version of hopt. Another strategy is to determine h in a fully adaptive
way by minimizing a cross-validated deviation between fn and f . Finally, a third popular method consists in referring
[f ′′(x)]2dx in (1.3) to a standard distribution, i.e., to compute the integral for a parametric family of centered densities

with scale parameter σ , and then to apply (1.3) with an estimated σ . Silverman (1986) pointed out that this method may
lead to incorrect results when the reference densities are symmetric at zero, but the true but unknown f is multimodal
and thus typically has larger curvature relative to scale. Also, the first method is not fully satisfactory since it requires the
subjective choice of a preliminary h1. Finally, the cross-validated h is known to be asymptotically optimal but may show a
poor behavior when sample size is small or moderate. See Feluch and Koronacki (1992).

It is the purpose of this paper to propose and study a fully adaptive approachwhich takes into account amodified version
of the third method, in which the reference densities are associated with the true f . In other words, we shall consider the
location-scale family generated by the true f . Interestingly enough, to deal with bias issues, it will not be necessary to
incorporate estimators of f ′′ based on preliminary choices of h. Also, we shall be able to get estimates of MSE and MISE and
hence adaptive choices of the smoothing parameters.

To begin with, let K0 be a kernel from the location-scale family associated with f , i.e.,

K0(u) = K0(u, θ, σ ) = σ f (σu + θ). (1.4)

For (1.1), with θ = EX and σ = 1, we then get, e.g.,

MSE fn(x) ∼
1
4
(f ′′(x))2h4Var2X +

1
nh

f (x)
∫

f 2(u)du. (1.5)

The interesting point about (1.5) is that the bias and variance parts contain terms which reflect both the local and global
behavior of f , namely f ′′(x), f (x) and, respectively, Var X and


f 2. Similarly for MISE.

For example, since typically Var X is small when f ′′(x) is large, (1.5) demonstrates that rather than choosing a fixed K , a
properly chosen kernel from (1.4) may decrease the bias. The scaling factor σ gives us more flexibility. As will be seen later
this will enable us to choose K0 so as to minimize MSE. Of course, since f in (1.4) is not available, we have to replace it by fn
from above. Hence our estimator becomes

f̂n(x) ≡ f̂n(x, θ, σ ) =
σ

nh

n−
i=1

fn


σ
x − Xi

h
+ θ


=

σ

n2h2

n−
j=1

n−
i=1

K


σ x − σXi + θh − hXj

h2


.

In other words, the f̂n constitute kernel estimators with the kernels taken from the location-scale family associated with a
classical kernel estimator. The choice of h, σ and θ will be discussed later.

To reduce a possible bias, our final estimator will be

f̂n(x) =
σ

n(n − 1)h2

−
i≠j

K


σ x − σXi + θh − hXj

h2


. (1.6)
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