

Statistics & Probability Letters 78 (2008) 127-134

Improved minimax estimation of the bivariate normal precision matrix under the squared loss

Xiaoqian Sun^{a,*}, Xian Zhou^b

^aDepartment of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA ^bDepartment of Applied Mathematics, The Hong Kong Polytechnic University, Hung Kom, Kowloon, Hong Kong

> Received 18 October 2006; accepted 23 May 2007 Available online 8 June 2007

Abstract

Suppose that n independent observations are drawn from a multivariate normal distribution $N_p(\mu, \Sigma)$ with both mean vector μ and covariance matrix Σ unknown. We consider the problem of estimating the precision matrix Σ^{-1} under the squared loss $L(\hat{\Sigma}^{-1}, \Sigma^{-1}) = \operatorname{tr}(\hat{\Sigma}^{-1}\Sigma - \mathbf{I}_p)^2$. It is well known that the best lower triangular equivariant estimator of Σ^{-1} is minimax. In this paper, by using the information in the sample mean on Σ^{-1} , we construct a new class of improved estimators over the best lower triangular equivariant minimax estimator of Σ^{-1} for p=2. Our improved estimators are in the class of lower-triangular scale equivariant estimators and the method used is similar to that of Stein [1964. Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Ann. Inst. Statist. Math. 16, 155–160.]

© 2007 Elsevier B.V. All rights reserved.

MSC: 62F10: 62H12

Keywords: Precision matrix; Best lower triangular equivariant minimax estimator; Inadmissibility; Bivariate normal distribution; The squared loss

1. Introduction

Suppose that $X_1, ..., X_n$ are independent observations from a multivariate normal distribution $N_p(\mu, \Sigma)$, where both mean vector $\mu \in \mathcal{R}^p$ and covariance matrix $\Sigma > 0$ are unknown. It is well known that (\bar{X}, S) is a complete sufficient statistic for (μ, Σ) , where

$$\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$$
 and $\mathbf{S} = \sum_{i=1}^{n} (\mathbf{X}_{i} - \bar{\mathbf{X}})(\mathbf{X}_{i} - \bar{\mathbf{X}})^{\mathrm{T}}$

denote the sample mean vector and the sample dispersion matrix, respectively, and T denotes the transpose of a matrix or vector. It is also well known that $\bar{\mathbf{X}}$ is independent of \mathbf{S} and $\bar{\mathbf{X}} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}/n)$, $\mathbf{S} \sim W_p(n-1, \boldsymbol{\Sigma})$. Many

E-mail address: xsun@clemson.edu (X. Sun).

^{*}Corresponding author.

authors have discussed the estimation of the generalized variance $|\Sigma|$, the generalized precision $|\Sigma|^{-1}$ and the covariance matrix Σ , such as Kubokawa (1989), Kubokawa and Srivastava (2003), Pal (1988), Sinha and Ghosh (1987), Sugiura (1988), Sun (1998), Wang (1984), to mention just a few.

In this paper we consider the estimation of the precision matrix Σ^{-1} under the squared loss

$$L(\hat{\boldsymbol{\Sigma}}^{-1}, \boldsymbol{\Sigma}^{-1}) = \operatorname{tr}(\hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{\Sigma} - \mathbf{I}_p)^2. \tag{1}$$

As pointed out in Haff (1979), under the affine transformation group \mathcal{A} :

$$(\bar{\mathbf{X}}, \mathbf{S}) \to (\mathbf{A}\bar{\mathbf{X}} + \mathbf{b}, \mathbf{A}\mathbf{S}\mathbf{A}^{\mathrm{T}}); \quad (\mu, \Sigma) \to (\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma\mathbf{A}^{\mathrm{T}}),$$

where **A** is an arbitrary $p \times p$ nonsingular matrix and **b** is an arbitrary $p \times 1$ vector, the best affine equivariant estimator (*BAEE*) is given by

$$\hat{\Sigma}_1^{-1} = \frac{(n-p-4)(n-p-1)}{n-2} \mathbf{S}^{-1}.$$
 (2)

Here we assume n > p + 4 throughout this paper. Haff (1979) has also shown that the *BAEE* $\hat{\Sigma}_1^{-1}$ is dominated by

$$\hat{\Sigma}^{-1} = \frac{(n-p-4)(n-p-1)}{n-2} [\mathbf{S}^{-1} + vt(v)\mathbf{I}],$$

where $v = \{\text{tr}(\mathbf{S})\}^{-1}$ and t(v) is an absolutely continuous function of v > 0 such that $0 < t(v) \le 2(p-1)/(n-p-1)$ and $t'(v) \le 0$. Consider the lower triangular transformation group \mathcal{B} :

$$(\bar{\mathbf{X}}, \mathbf{S}) \to (\mathbf{G}\bar{\mathbf{X}} + \mathbf{h}, \mathbf{G}\mathbf{S}\mathbf{G}^{\mathrm{T}}); \quad (\boldsymbol{\mu}, \boldsymbol{\Sigma}) \to (\mathbf{G}\boldsymbol{\mu} + \mathbf{h}, \mathbf{G}\boldsymbol{\Sigma}\mathbf{G}^{\mathrm{T}}),$$
 (3)

where **G** is a $p \times p$ lower-triangular matrix and **h** is a $p \times 1$ vector. It can be shown that the equivariant estimator under the above group has the form $\hat{\Sigma}^{-1} = (\mathbf{K}^{-1})^T \mathbf{\Delta}_p \mathbf{K}^{-1}$ where **K** is a lower triangular matrix with positive diagonal elements such that $\mathbf{K}\mathbf{K}^T = \mathbf{S}$ and $\mathbf{\Delta}_p = \operatorname{diag}(\delta_{1p}, \dots, \delta_{pp})$ is an arbitrary diagonal matrix whose elements do not depend on **S**. For p = 2, Olkin and Selliah (1977) and Sharma and Krishnamoorthy (1983) have derived the best lower triangular equivariant estimator (*BLEE*)

$$\hat{\boldsymbol{\Sigma}}_2^{-1} = (\mathbf{K}^{-1})^{\mathrm{T}} \boldsymbol{\Delta}_2 \mathbf{K}^{-1},\tag{4}$$

where $\Delta_2 = \text{diag}(\delta_{12}, \delta_{22})$ with δ_{12} and δ_{22} given by

$$\begin{cases} \delta_{12} = \frac{(n-2)(n-5)[(n-4)^2 - (n-6)]}{(n-2)(n-4)^2 - (n-6)}, \\ \delta_{22} = \frac{(n-3)(n-4)(n-5)(n-6)}{(n-2)(n-4)^2 - (n-6)}. \end{cases}$$
(5)

For general p, the BLEE of Σ^{-1} is much more complicated, one may refer to Krishnamoorthy and Gupta (1989). Note that the group \mathcal{B} is a subgroup of the group \mathcal{A} , thus the BLEE $\hat{\Sigma}_2^{-1}$ is an improved estimator of the BAEE $\hat{\Sigma}_1^{-1}$. Also, since the lower triangular transformation group \mathcal{B} is solvable, the BLEE $\hat{\Sigma}_2^{-1}$ with constant risk is automatically minimax according to Kiefer (1957).

Using the approach in Gupta and Ofori-Nyarko (1995), we can get a better estimator than $\hat{\Sigma}_2^{-1}$ in the form of the convex combination of the *BLEE* and the corresponding best upper triangular equivariant estimator (*BUEE*) of Σ^{-1} . Moreover, Sharma and Krishnamoorthy (1983) constructed an orthogonal equivariant improved estimator of $\hat{\Sigma}_2^{-1}$ for p=2. For general p>2, this becomes very complicated; one may refer to Takemura (1984). Here we note that all improved estimators of $\hat{\Sigma}_2^{-1}$ given above depend on S only and the information in the sample mean \bar{X} on Σ is not utilized. It has been well known that when μ and Σ are both unknown, the sample mean \bar{X} contains useful information about Σ . By using such information in \bar{X} , Zhou et al. (2001) obtained an improved estimator that dominates the best lower triangular equivariant estimator of the precision matrix Σ^{-1} under the entropy loss. Kubokawa and Srivastava (2003) derived an estimator that dominates the best lower triangular equivariant estimator of the covariance matrix Σ under the entropy loss. It appears, however, that the problem of improving estimators of Σ^{-1} using the information in Σ under the squared loss in (1) has not been considered in the literature. The main aim of this paper is to study this problem. In Section 2 below, under the squared loss L, by using Stein's method (see Stein, 1964), we will

Download English Version:

https://daneshyari.com/en/article/1155245

Download Persian Version:

https://daneshyari.com/article/1155245

Daneshyari.com