

Available online at www.sciencedirect.com

Statistics & Probability Letters 76 (2006) 503-506

www.elsevier.com/locate/stapro

A converse to precise asymptotic results

Deli Li^{a,*,1}, Aurel Spătaru^{b,2}

^aDepartment of Mathematical Sciences, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B 5E1

^bInstitute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie No. 13, 76100 Bucharest 5,

Romania

Received 23 February 2004; received in revised form 25 July 2005 Available online 1 September 2005

Abstract

Let $\{X, X_n, n \ge 1\}$ be i.i.d. random variables with partial sums $\{S_n, n \ge 1\}$, put $f(\varepsilon) = \sum_n a_n P(|S_n| \ge \varepsilon b_n), \varepsilon \ge 0$, and assume there exist functions g and h, such that $\lim_{\varepsilon \ge 0} g(\varepsilon)f(\varepsilon) = h(EX^2)$ whenever $EX^2 < \infty$ and EX = 0. We prove the converse result, namely that $\limsup_{\varepsilon \ge 0} g(\varepsilon)f(\varepsilon) < \infty$ and $b_n = O(n)$ imply $EX^2 < \infty$ and EX = 0. (C) 2005 Elsevier B.V. All rights reserved.

MSC: primary 60G50; secondary 60F15

Keywords: Tail probabilities of sums of i.i.d. random variables; Precise asymptotics; Symmetrization

1. Introduction and result

Let $\{X, X_n, n \ge 1\}$ be i.i.d. random variables with $P(X \ne 0) > 0$ and partial sums $\{S_n, n \ge 1\}$, and consider series of the type

$$f(\varepsilon) = \sum_{n} a_{n} P(|S_{n}| \ge \varepsilon b_{n}), \quad \varepsilon > 0,$$

where $a_n, b_n > 0$ and $\sum_n a_n = \infty$. Then there exists a threshold α , such that $f(\varepsilon) = \infty$ for $\varepsilon < \alpha$, while $f(\varepsilon) < \infty$ for $\varepsilon > \alpha$. The so-called precise asymptotic problem consists in finding, under appropriate moment conditions, an elementary function $g(\varepsilon) > 0, \varepsilon > \alpha$, such that $\lim_{\varepsilon \searrow \alpha} g(\varepsilon) = 0$ and $\lim_{\varepsilon \searrow \alpha} g(\varepsilon)f(\varepsilon) = l \neq 0, \infty$, i.e., in establishing that $f(\varepsilon) \sim l/g(\varepsilon)$ as $\varepsilon \searrow \alpha$. For almost exhaustive references on this area, see Spătaru (2004a,b). Except for the cases, where X is assumed to belong to the domain of attraction of a stable law, most known such asymptotics are derived by assuming at least $EX^2 < \infty$, and then it turns out that $l = h(EX^2)$ for some finite function h. Typical precise asymptotic results suited to have genuine converses are those where the assumption " $EX^2 < \infty$ and EX = 0" is stronger than " $f(\varepsilon) < \infty$ for some $\varepsilon > 0$ ". When $\alpha = 0$, such a general result is as follows.

0167-7152/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.spl.2005.08.017

^{*}Corresponding author.

E-mail addresses: dli@sleet.lakeheadu.ca (D. Li), aspataru@pcnet.ro (A. Spătaru).

¹Supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

²Supported in part by the Ministry of Education and Research of Romania under Grant CNCSIS 27639.

Theorem A. There exist positive and finite functions g and h on $(0, \infty)$ with $\lim_{x\to\infty} h(x) = \infty$, depending solely on the sequences $\{a_n\}$ and $\{b_n\}$, such that

$$\lim_{\varepsilon \searrow 0} g(\varepsilon) f(\varepsilon) = h(EX^2),$$

whenever $EX^2 < \infty$ and EX = 0.

We obtain the next converse to Theorem A.

Theorem 1. Let g be as in Theorem A, and assume that

$$\limsup_{\varepsilon \searrow 0} g(\varepsilon) \sum_{n} a_{n} P(|S_{n}| \ge \varepsilon b_{n}) < \infty, \tag{1}$$

where $b_n = O(n)$. Then $EX^2 < \infty$ and EX = 0.

Remark 1. (1) implies that $f(\varepsilon) < \infty$ for all $\varepsilon > 0$. If this, in turn, implied that $EX^2 < \infty$ and EX = 0, there would be nothing more to prove. The two examples below are veritable converses to important precise asymptotic theorems.

Proof. We first show that (1) implies $EX^2 < \infty$. To do this, let $\{X', X'_n, n \ge 1\}$ be an independent copy of $\{X, X_n, n \ge 1\}$, and consider the symmetrized random variables $Y = X - X', Y_n = X_n - X'_n$, $U_n = Y_1 + \cdots + Y_n, n \ge 1$. Next, for any $\lambda > 0$, write $Y_n(\lambda) = Y_nI\{|Y_n| \le \lambda\} - Y_nI\{|Y_n| > \lambda\}$, $n \ge 1$. Since each Y_n is symmetric, it follows that $\{Y, Y_n(\lambda), n \ge 1\}$ are i.i.d. random variables. Clearly, (1) implies that

$$\limsup_{\varepsilon \searrow 0} g(\varepsilon) \sum_{n} a_{n} P(|U_{n}| \ge 2\varepsilon b_{n}) < \infty.$$
⁽²⁾

Since

$$\sum_{k=1}^{n} Y_k I\{|Y_k| \leq \lambda\} = \left(U_n + \sum_{k=1}^{n} Y_k(\lambda)\right) / 2,$$

(2) shows that

$$\limsup_{\varepsilon \searrow 0} g(\varepsilon) \sum_{n} a_{n} P\left(\left| \sum_{k=1}^{n} Y_{k} I\{ |Y_{k}| \leq \lambda \} \right| \geq 2\varepsilon b_{n} \right)$$

$$\leq 2 \limsup_{\varepsilon \searrow 0} g(\varepsilon) \sum_{n} a_{n} P(|U_{n}| \geq 2\varepsilon b_{n}) < \infty.$$
(3)

On the other hand, by Theorem A, we have

$$\lim_{\epsilon \searrow 0} g(\epsilon) \sum_{n} a_{n} P\left(\left| \sum_{k=1}^{n} Y_{k} I\{ |Y_{k}| \leq \lambda \} \right| \geq 2\epsilon b_{n} \right) = h(E[Y^{2}I\{ |Y| \leq \lambda \}/4]).$$
(4)

Combining (3) with (4), it follows there exists M > 0 such that

$$h(E[Y^2I\{|Y|\leqslant\lambda\}]/4)\leqslant M<\infty, \quad \lambda>0.$$
(5)

As $\lim_{x\to\infty} h(x) = \infty$, on letting $\lambda \to \infty$ in (5) shows that $EY^2 < \infty$, and so $EX^2 < \infty$.

We now show that (1) implies EX = 0. Note that $nEX = S_n - (S_n - nEX)$, $n \ge 1$. Hence, by (1) and Theorem A, we have

$$\limsup_{\varepsilon \searrow 0} g(\varepsilon) \sum_{n} a_{n} P(|nEX| \ge 2\varepsilon b_{n}) < \infty.$$
(6)

Since $\sum_{n} a_n = \infty$ and $b_n = O(n)$, (6) leads to EX = 0. \Box

Download English Version:

https://daneshyari.com/en/article/1155340

Download Persian Version:

https://daneshyari.com/article/1155340

Daneshyari.com