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Abstract

We consider first-passage percolation on the d dimensional cubic lattice for d ≥ 2; that is, we assign
independently to each edge e a nonnegative random weight te with a common distribution and consider
the induced random graph distance (the passage time), T (x, y). It is known that for each x ∈ Zd ,

µ(x) = limn T (0, nx)/n exists and that 0 ≤ ET (0, x) − µ(x) ≤ C∥x∥
1/2
1 log ∥x∥1 under the condition

Eeαte < ∞ for some α > 0. By combining tools from concentration of measure with Alexander’s methods,
we show how such bounds can be extended to te’s with distributions that have only low moments. For such
edge-weights, we obtain an improved bound C(∥x∥1 log ∥x∥1)1/2 and bounds on the rate of convergence
to the limit shape.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The model

Let d ≥ 2. Denote the set of nearest-neighbor edges of Zd by E d , and let (te)e∈E d be a collec-
tion of non-negative random variables indexed by E d . For x, y ∈ Zd , define the passage time
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τ(x, y) = inf
γ :x→y

τ(γ ),

where τ(γ ) =


e∈γ te and γ is any lattice path from x to y.
We will assume that P, the distribution of (te), is a product measure satisfying the following

conditions:

(A1) EY 2 < ∞, where Y is the minimum of d i.i.d. copies of te.
(A2) P(te = 0) < pc, where pc is the threshold for d-dimensional bond percolation.

We now comment on assumptions (A1) and (A2). From Lemma 3.1 of [8], (A1) guarantees that
Eτ(0, y)4−η < ∞ for all η > 0 and y ∈ Zd . Conversely, it is sufficient for (A1) that Et (2+ϵ)/d

e is
finite for some ϵ > 0. On the other hand, (A2) ensures that

P(∃ a geodesic from x to y) = 1 for all x, y ∈ Zd , (1.1)

where a geodesic is a path γ from x to y that has τ(γ ) = τ(x, y). Under assumptions (A1) and
(A2), equation 1.13 and Theorem 1.15 of [12] show that there exists a norm µ(·) on Rd , which
is called the time constant, such that for x ∈ Zd , P-almost surely,

lim
n→∞

1
n
τ(0, nx) = lim

n→∞

1
n

Eτ(0, nx) = inf
n≥1

1
n

Eτ(0, nx) = µ(x). (1.2)

If (A1) is replaced by the condition that the minimum of 2d i.i.d. copies of te has finite dth
moment, then the shape theorem holds; that is, for all ϵ > 0, with probability one,

(1 − ϵ)B0 ⊂
B(t)

t
⊂ (1 + ϵ)B0 for all large t, (1.3)

where

B(t) :=


x + h; x ∈ Zd , τ (0, x) ≤ t, h ∈


−

1
2
,

1
2

d


and B0 := {x ∈ Rd
; µ(x) ≤ 1}, the limit shape.

1.2. Main results

Set T = τ(0, x). Our results below consist of (a) a bound on the deviation of ET from µ

under (A1) and (A2) and (b) outer bounds on the rate of convergence to the limit shape under
these same conditions and inner bounds under stronger conditions. These should be compared to
the results of Alexander [2], who proved the first two with log in place of


log under exponential

moments for te.

Proposition 1.1. Assume (A1) and (A2). There exists C1 such that for all x ∈ Zd with ∥x∥1 > 1,

µ(x) ≤ ET ≤ µ(x) + C1(∥x∥1 log ∥x∥1)
1/2.

Proof. This result follows by directly combining the Gaussian concentration inequality we derive
below in Theorem 2.1 with Alexander’s method of approximation of subadditive functions [2].
Our final bound is slightly better than the one given by Alexander in [2] because he used only
an exponential concentration inequality. The interested reader can see the arXiv version of this
paper [11] (version 1). �
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