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Abstract

In the problem of optimal investment with a utility function defined on (0,∞), we formulate sufficient
conditions for the dual optimizer to be a uniformly integrable martingale. Our key requirement consists of
the existence of a martingale measure whose density process satisfies the probabilistic Muckenhoupt (A p)

condition for the power p = 1/(1 − a), where a ∈ (0, 1) is a lower bound on the relative risk-aversion of
the utility function. We construct a counterexample showing that this (A p) condition is sharp.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

An unpleasant qualitative feature of the general theory of optimal investment with a utility
function defined on (0,∞) is that the dual optimizer Y may not be a uniformly integrable
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martingale. In the presence of jumps, it may even fail to be a local martingale. The corresponding
counterexamples can be found in [16]. In this paper, we seek to provide conditions under which
the uniform martingale property for Y holds and thus, Y/Y0 defines the density process of the
optimal martingale measure Q.

The question of whether Y is a uniformly integrable martingale is of longstanding interest in
mathematical finance and can be traced back to [9,13]. This problem naturally arises in situations
involving utility-based arguments. For instance, it is relevant for pricing in incomplete markets,
where according to [11] the existence of Q is equivalent to the fact that for every bounded
contingent claim ψ its marginal utility-based price p is unique. In this case,

p = EQ [ψ] = E

YTY0
ψ


,

and thus Q plays the role of the pricing measure from the classical Black and Scholes theory
of complete financial markets, see [20,2]. Notice that the nonexistence of Q is equivalent to

E
YTY0


< 1. Then for ψ = 1 the expression E

YTY0
ψ


fails to be even an arbitrage-free price!

Of course, if the dual minimizer Y can be computed explicitly as in [15], then its uniform
integrability property may be verified using either the sufficient conditions of Novikov and
Kazamaki or the necessary and sufficient criteria based on Hellinger processes. We refer the
reader to [14, Section 1.4] for the former and to [12, Section IV.2] for the latter. However, for a
generic incomplete model there is little hope of obtaining an explicit representation for Y , and a
different approach should be used.

Our key requirement consists of the existence of a dual supermartingale Z , which satisfies the
probabilistic Muckenhoupt (Ap) condition for the power p > 1 such that

p =
1

1 − a
. (1.1)

Here a ∈ (0, 1) is a lower bound on the relative risk-aversion of the utility function. As we
prove in Theorem 5.1, this condition, along with the existence of an upper bound for the relative
risk-aversion, yields (Ap′) forY for some p′ > 1. This property in turn implies that the dual mini-
mizer Y is of class (D), that is, the family of its values evaluated at all stopping times is uniformly
integrable. In Proposition 6.1, we construct a counterexample showing that the bound (1.1) is
the best possible for Y to be of class (D) even in the case of power utilities and continuous stock
prices.

In the case of the power utility function

U (x) =
x1−a

1 − a
, x > 0,

with the relative risk-aversion a ∈ (0, 1) the dual optimizer Y satisfies (Ap)with p given by (1.1)
if and only if the (Ap) condition holds for some dual supermartingale Z . Moreover, Y has the
smallest (Ap)-constant among all such Z . This fact has been already established in [19]. For
reader’s convenience we shall restate it as Proposition 3.3.

A similar idea of passing regularity from some dual element to the optimal one has been
employed in [4,8,3] for respectively, quadratic, power and exponential utility functions defined on
the whole real line. These papers use appropriate versions of the Reverse Hölder (Rq) inequality.
We recall that (Ap) and (Rq) conditions are dual in the sense that if Z is the density process of the



Download English Version:

https://daneshyari.com/en/article/1155394

Download Persian Version:

https://daneshyari.com/article/1155394

Daneshyari.com

https://daneshyari.com/en/article/1155394
https://daneshyari.com/article/1155394
https://daneshyari.com

