
Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications 126 (2016) 1885–1900
www.elsevier.com/locate/spa

On the functional CLT for stationary Markov chains
started at a point

David Barrera, Costel Peligrad, Magda Peligrad∗

Department of Mathematical Sciences, University of Cincinnati, PO Box 210025, Cincinnati, OH 45221-0025, USA

Received 18 March 2015; received in revised form 1 December 2015; accepted 1 December 2015
Available online 17 December 2015

Dedicated to the memory of Mikhail Gordin

Abstract

We present a general functional central limit theorem started at a point also known under the name of
quenched. As a consequence, we point out several new classes of stationary processes, defined via projection
conditions, which satisfy this type of asymptotic result. One of the theorems shows that if a Markov chain
is stationary ergodic and reversible, this result holds for bounded additive functionals of the chain which
have a martingale coboundary in L1 representation. Our results are also well adapted for strongly mixing
sequences providing for this case an alternative, shorter approach to some recent results in the literature.
c⃝ 2016 Published by Elsevier B.V.
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1. Introduction and results

In this paper we address the question of the validity of functional limit theorem for processes
started at a point for almost all starting points. These types of results are also known under the
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name of quenched limit theorems or almost sure conditional invariance principles. The quenched
functional CLT is more general than the usual one and it is very important for analyzing random
processes in random environment, Markov chain Monte Carlo procedures and the discrete
Fourier transform (see [30,31,2]). On the other hand there are numerous examples of processes
satisfying the functional CLT but failing to satisfy the quenched CLT. Some examples were
constructed by Volný and Woodroofe [35] and for the discrete Fourier transforms by Barrera [1].
This is the reason why it is desirable to point out classes of processes satisfying a quenched
CLT. Special attention will be devoted to reversible Markov chains and several open problems
will be pointed out. Reversible Markov chains have applications to statistical mechanics and to
Metropolis Hastings algorithms used in Monte Carlo simulations. The methods of proof we used
are based on martingale techniques combined with results from ergodic theory.

The field of limit theorems for stationary stochastic processes is closely related to Markov
operators and dynamical systems. All the results for stationary sequences can be translated in
the language of Markov operators and vice-versa. In this paper we shall mainly use the Markov
operator language and also indicate the connection with stationary processes.

We assume that (ξn)n∈Z is a stationary Markov chain defined on a probability space (Ω , F , P)

with values in a measurable state space (S, A), with marginal distribution π(A) = P(ξ0 ∈ A)

and regular conditional distribution for ξ1 given ξ0, denoted by Q(x, A) = P(ξ1 ∈ A|ξ0 = x).
Let Q also denote the Markov operator acting via (Q f )(x) =


S f (s)Q(x, ds). Next, for p ≥ 1,

let L0
p(π) be the set of measurable functions on S such that


| f |

pdπ < ∞ and


f dπ = 0. For

some function f ∈ L0
2(π), let

X i = f (ξi ), Sn = Sn( f ) =

n
i=1

X i . (1)

Denote by Fk the σ -field generated by ξi with i ≤ k. For any integrable random variable X
we denote by Ek(X) = E(X |Fk) the conditional expectation of X given Fk . With this notation,
E0(X1) = (Q f )(ξ0) = E(X1|ξ0). We denote by ∥X∥p the norm in Lp = Lp(Ω , F , P). The
integral on the space (S, A, π) will be denoted by Eπ . So, E f (ξ0) = Eπ f .

The Markov chain is usually constructed in a canonical way on Ω = S∞ endowed with
sigma algebra A∞, and ξn is the nth projection on S. The shift T : Ω → Ω is defined by
ξn(T ω) = ξn+1(ω) for every integer n.

For any probability measure υ on A the law of (ξn)n∈Z with transition operator Q and initial
distribution υ is the probability measure Pυ on (S∞, A∞) such that

Pυ(ξn+1 ∈ A|ξn = x) = Q(x, A) and Pυ(ξ0 ∈ A) = υ(A).

For υ = π we denote P = Pπ . For υ = δx , the Dirac measure, we denote by Px and Ex the
probability and conditional expectation for the process started at x . Note that for each x fixed
Px (·) is a measure on F ∞, the sigma algebra generated by ∪k Fk . Also

P(A) =


Px (A)π(dx). (2)

We mention that any stationary sequence (Yk)k∈Z can be viewed as a function of a Markov
process ξk = (Y j ; j ≤ k) with the function g(ξk) = Yk . Therefore the theory of stationary
processes can be embedded in the theory of Markov chains. So, our results apply to any stationary
process with the corresponding interpretation. In the context of a stationary process, a fixed
starting point for a corresponding Markov chain means a fixed past trajectory for k ≤ 0.
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