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Abstract

One proves here the backward uniqueness of solutions to stochastic semilinear parabolic equations and
also for the tamed Navier–Stokes equations driven by linearly multiplicative Gaussian noises. Applications
to approximate controllability of nonlinear stochastic parabolic equations with initial controllers are given.
The method of proof relies on the logarithmic convexity property known to hold for solutions to linear
evolution equations in Hilbert spaces with self-adjoint principal part.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the stochastic parabolic equation

d X (t)−

d
i, j=1

∂

∂ξi


ai j (t, ξ)

∂X (t)

∂ξ j


dt + b(t, ξ) · ∇ X (t) dt

+ψ(t, ξ, X (t))dt = X (t)dW (t) in (0, T )× O,
X (0, ξ) = x(ξ), ξ ∈ O; X (t, ξ) = 0 on (0, T )× ∂O,

(1.1)
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where O ⊂ Rd , 1 ≤ d < ∞, is a bounded and open domain with the smooth boundary ∂O and
W is a Wiener process of the form

W (t, ξ) =

∞
j=1

µ j e j (ξ)β j (t), ξ ∈ O, t ≥ 0. (1.2)

Here {e j }
∞

j=1 ⊂ C2(O) is an orthonormal basis in L2(O), {β j }
∞

j=1 is an independent system
of real-valued Brownian motions on a probability space (Ω ,F ,P) with the natural filtration
(Ft )t≥0, and {µ j }

∞

j=1 ⊂ R is such that

∞
j=1

µ2
j∥e j∥

2
C2

b
< ∞, (1.3)

where ∥ · ∥C2
b

denotes the supnorm of the functions and its first and second order derivatives.

As regards the functions ai j : [0, T ]× O → R, b : [0, T ]× O → R and ψ : [0, T ]× O → R,
we assume that the following conditions hold

ai j ∈ C([0, T ] × O),
∂

∂t
ai j ∈ C([0, T ] × O),

∂

∂ξ j
ai j ∈ C([0, T ] × O),

ai j = a j i , ∀i, j = 1, . . . , d, b ∈ C([0, T ] × O; Rd),

divξb ∈ C([0, T ] × O),

(1.4)

d
i, j=1

ai j (t, ξ)ui u j ≥ γ |u|
2, ∀u = (u1, . . . , ud) ∈ Rd , (t, ξ) ∈ [0, T ] × O, (1.5)

where γ > 0 and | · | is the Euclidean norm on Rd ,

ψ ∈ C([0, T ] × O × R), ψ(t, ξ, 0) ≡ 0. (1.6)

Moreover, r → ψ(t, ξ, r) is monotonically nondecreasing and

|ψ(t, ξ, r1)− ψ(t, ξ, r2)| ≤ L|r1 − r2| |ψ0(t, ξ, r1, r2)|,

∀r1, r2 ∈ R, (t, ξ) ∈ [0, T ] × O, (1.7)

where ψ0 ∈ C([0, T ] × O × R × R) and L > 0,

|ψ0(t, ξ, r1, r2)| ≤ C(|r1|
q

+ |r2|
q

+ 1), ∀r1, r2 ∈ R, (t, ξ) ∈ [0, T ] × O, (1.8)

where

0 ≤ q <
4

d − 2
if d > 2,

q ∈ (0,∞) if d = 2,
(1.9)

and no polynomial growth condition of the form (1.9) is necessary if d = 1.
In the following, we denote by L2(O) the space of Lebesgue square integrable functions on

O with the norm denoted by | · |2 and the scalar product ⟨·, ·⟩. We denote by W m,p(O), H1
0 (O)

and H−1(O) the standard Sobolev spaces on O with the usual norms ∥u∥m,p, ∥ · ∥1 and ∥ · ∥−1,
respectively.
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