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Abstract

A coupled forward–backward stochastic differential system (FBSDS) is formulated in spaces of fields
for the incompressible Navier–Stokes equation in the whole space. It is shown to have a unique local solu-
tion, and further if either the Reynolds number is small or the dimension of the forward stochastic differ-
ential equation is equal to two, it can be shown to have a unique global solution. These results are shown
with probabilistic arguments to imply the known existence and uniqueness results for the Navier–Stokes
equation, and thus provide probabilistic formulas to the latter. Related results and the maximum principle
are also addressed for partial differential equations (PDEs) of Burgers’ type. Moreover, from truncating
the time interval of the above FBSDS, approximate solution is derived for the Navier–Stokes equation by
a new class of FBSDSs and their associated PDEs; our probabilistic formula is also bridged to the prob-
abilistic Lagrangian representations for the velocity field, given by Constantin and Iyer (2008) and Zhang
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(2010); finally, the solution of the Navier–Stokes equation is shown to be a critical point of controlled
forward–backward stochastic differential equations.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the following Cauchy problem for deterministic backward Navier–Stokes equation
for the velocity field of an incompressible, viscous fluid:∂t u +

ν

2
1u + (u · ∇)u + ∇ p + f = 0, t ≤ T ;

∇ · u = 0, u(T ) = G,
(1.1)

which is obtained from the classical Navier–Stokes equation via the time-reversing transforma-
tion

(u, p, f )(t, x) −→ (−u, p, f )(T − t, x), for t ≤ T . (1.2)

Here, T > 0, u is the d-dimensional velocity field of the fluid, p is the pressure field, ν ∈ (0,∞)

is the kinematic viscosity, G = −u0 with u0 being the initial velocity of the fluid by the
above transformation, and f is the external force field which, without any loss of generality,
is taken to be divergence free. It is well-known that the Navier–Stokes equation was introduced
by Navier [37] and Stokes [50] via adding a dissipative term ν1u as the friction force to Euler’s
equation, which is Newton’s law for an infinitesimal volume element of the fluid.

Forward–backward stochastic differential equations (FBSDEs) are already well-known
nowadays to be connected to systems of nonlinear parabolic partial differential equations (PDEs)
(see among many others [2,10,17,30,35,41,42,51,57]). Within such a theory, the d-dimensional
Burgers’ equation (in the backward form)∂tv +

ν

2
1v + (v · ∇)v + f = 0, t ≤ T ;

v(T ) = φ,
(1.3)

as a simplified version of Navier–Stokes equation (1.1), is associated in a straightforward way to
the following coupled FBSDE:

d Xs(t, x) = Ys(t, x) ds +
√
ν dWs, s ∈ [t, T ];

X t (t, x) = x;

−dYs(t, x) = f (s, Xs(t, x)) ds −
√
νZs(t, x) dWs, s ∈ [t, T ];

YT (t, x) = φ(XT (t, x)),

(1.4)

where W is a d-dimensional standard Brownian motion, X satisfies a forward stochastic differ-
ential equation and satisfies a backward one. They are related to each other by the following:

Ys(t, x) = v(s, Xs(t, x)), Zs(t, x) = ∇v(s, Xs(t, x)), s ∈ [t, T ] × Rd (1.5)
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