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Abstract

Stochastic filtering is defined as the estimation of a partially observed dynamical system. Approximating
the solution of the filtering problem with Gaussian mixtures has been a very popular method since the 1970s.
Despite nearly fifty years of development, the existing work is based on the success of the numerical imple-
mentation and is not theoretically justified. This paper fills this gap and contains a rigorous analysis of a new
Gaussian mixture approximation to the solution of the filtering problem. We deduce the L2-convergence
rate for the approximating system and show some numerical examples to test the new algorithm.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The stochastic filtering problem deals with the estimation of an evolving dynamical system,
called the signal, based on partial observations and a priori stochastic model. The signal is mod-
elled by a stochastic process denoted by X = {X t , t ≥ 0}, defined on a probability space
(Ω ,F ,P). The signal process is not available to observe directly; instead, a partial observation
is obtained and it is modelled by a process Y = {Yt , t ≥ 0}. The information available from
the observation up to time t is defined as the filtration Y = {Yt , t ≥ 0} generated by the ob-
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servation process Y . In this setting, we want to compute πt — the conditional distribution of X t
given Yt . The analytical solutions to the filtering problem are rarely available, and there are only
few exceptions such as the Kalman–Bucy filter and the Beneš filter (see, e.g. Chapter 6 in [4]).
Therefore numerical algorithms for solving the filtering equations are required.

The description of a numerical approximation for πt should contain the following three parts:
the class of approximations; the law of evolution of the approximation; and the method of mea-
suring the approximating error. Generalised particle filters with Gaussian mixtures is a numerical
scheme to approximate the solution of the filtering problem, and it is a natural generalisation of
the classic particle filters (or sequential Monte Carlo methods) in the sense that the Dirac delta
measures used in the classic particle approximations are replaced by mixtures of Gaussian mea-
sures. In other words, Gaussian mixture approximations are algorithms that approximate πt with
random measures of the form

i

ai (t)Γvi (t),ω j (t),

where Γv j (t),ω j (t) is the Gaussian measure with mean v j (t) and covariance matrixω j (t). The evo-
lution of the weights, the mean and the covariance matrices satisfy certain stochastic differential
equations which are numerically solvable. As time increases, typically the trajectories of a large
number of particles diverge from the signal’s trajectory; with only a small number remaining
close to the signal. The weights of the diverging particles decrease rapidly, therefore contributing
very little to the approximating system, and causing the approximation to converge very slowly
to the conditional distribution. In order to tackle this so-called sample degeneracy phenomenon, a
correction procedure is added. At correction times, each particle is replaced by a random number
of offspring. Redundant particles are abandoned and only the particles contributing significantly
to the system (i.e. with large weights) are carried forward; so that the most probable region of the
trajectory of the signal process X will be more thoroughly explored. This correction mechanism
is also called branching or resampling. Currently the multinomial branching algorithm and the
tree based branching algorithm (TBBA) are two approaches for the correction step.

The idea of using Gaussian mixtures in the context of Bayesian estimation can be traced
back to Alspach and Sorenson [1,32], and Tam and Moore [34]. Later in the work by Ander-
son and Moore [2], Gaussian mixtures are used in combination with extended Kalman filters to
produce an empirical approximation to the discrete time filtering problem. The research on this
area became more active since 2000s. Recently in Doucet et al. [15], these methods are revisited
to construct a method which uses Rao-Blackwellisation in order to take advantage of the ana-
lytic structure present in some important classes of state-space models. Recent advances in this
direction are contained in [3,14,11]. In Chen and Liu [6], a random mixture of Gaussian distri-
butions, called mixture Kalman filters, are used to approximate a target distribution again based
on the explicit linear filter. Further work on this topic is contained in [18,29,33,35]. Gustafsson
et al. [20] describe a general framework for a number of applications, which are implemented
using the idea of Gaussian particle filters. Further development in this direction can be found in
[13,17,19,26]. For more recent work related to Gaussian mixture approximations, see Kotecha
and Djurić [24,25], Le Gland et al. [27], Reich [30], Flament et al. [16], Van der Merwe and Wan
[12], Carmi et al. [5], Iglesias, Law and Stuart [21], and Crisan and Li [7].

1.1. Contribution of the paper

In this paper we construct a new approximation to the conditional distribution of the signal
π = {πt : t ≥ 0} that consists of a mixture of Gaussian measures. In contrast with the exist-
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