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Abstract

Various effects of the noise intensity upon the solution u(t, x) of the stochastic heat equation with
Dirichlet boundary conditions on [0, 1] are investigated. We show that for small noise intensity, the pth
moment of supx∈[0,1] |u(t, x)| is exponentially stable, however, for large one, it grows at least exponentially.
We also prove that the noise excitation of the pth energy of u(t, x) is 4, as the noise intensity goes to infinity.
We formulate a common method to investigate the lower bounds of the above two different behaviors for
large noise intensity, which are hard parts in Foondun and Joseph (2014), Foondun and Nualart (2015) and
Khoshnevisan and Kim (2015).
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction and main results

We are interested in various behaviors of the following stochastic heat equation relative to λ:
∂t u(t, x) =

1
2
1u(t, x) + λσ(u(t, x))ẇ(t, x), t > 0, x ∈ (0, 1),

u(0, x) = u0(x), x ∈ (0, 1),
(1.1)
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where λ > 0 is a positive number, σ is a non-random measurable function defined on R and
ẇ(t, x) is a Gaussian space–time noise on [0, ∞) × [0, 1], which is usually explained as the
distribution derivative of Brownian sheet w(t, x) in t and x , see [22]. Such an equation is closely
connected to the parabolic Anderson model (as σ(u) = u, see [3]), the stochastic Burger’s
equation [1,13] and the Kardar–Parisi–Zhang (KPZ) equation [1,11,14]. Hence some crucial
properties, such as the weak intermittency of the solution, are actively studied, see [4,9,17] and
references therein.

In this paper, we are mainly interested in (1.1) with homogeneous Dirichlet boundary condi-
tions, i.e., u(t, 0) = u(t, 1) = 0. Parts of our results will also hold for (1.1) with homogeneous
Neumann boundary conditions ∂x u(t, 0) = ∂x u(t, 1) = 0 and we will state them in the form of
remarks.

According to [10,16], the parameter λ > 0 in (1.1) will be called the level of noise or noise
intensity, which is regarded as the inverse temperature. The solution u(t, x) can be thought of as
the partition function of a continuous space–time random polymer, see [2] for more explanations.

In this paper, two kinds of the behaviors of the solution relative to noise intensity λ will be
studied. To explain our aims and motivations in detail, let us first introduce some notation and
the definition of the solution (1.1). Let {Ft }t≥0 denote the filtration generated by the Brownian
sheet {w(t, x); t ≥ 0, x ∈ [0, 1]}, see [22] for more information. In this paper, we will always
assume that the following assumptions hold:

(A.1) The initial value u0 is non-random and continuous on [0, 1]. Furthermore, we assume
that the Lebesgue measure of the set [γ, 1 − γ ] ⊂ supp(u0) is strictly positive, and
infx∈[γ,1−γ ] u0(x) > 0, where supp(u0) denotes the support of u0 and γ ∈ (0, 1/4) is
fixed hereafter.

(A.2) σ(0) = 0 and σ is Lipschitz continuous, that is, there exists KU > 0 such that for all
u, v ∈ R,

|σ(u) − σ(v)| ≤ KU |u − v|.

Let us recall the definition of the solution to (1.1). Based on the definition introduced in [22],
a random field {uλ(t, x); t ≥ 0, x ∈ [0, 1]} is said to be a mild solution of (1.1) with the
homogeneous Dirichlet boundary conditions if it is Ft -adapted and continuous in (t, x), and
further it satisfies the following integral equation with probability one:

u(t, x) =

 1

0
gD(t, x, y)u0(y)dy +

 t

0

 1

0
gD(t − s, x, y)λσ(u(s, y))w(dsdy)

:= D1(t, x) + D2,λ(t, x), (1.2)

where gD(t, x, y) denotes the fundamental solution (or heat kernel) of ∂t u(t, x) =
1
21u(t, x)

with Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0.
Similarly, an Ft -adapted and continuous random field {uλ(t, x); t ≥ 0, x ∈ [0, 1]} is said

to be a mild solution of (1.1) with homogeneous Neumann boundary conditions if (1.2) is
satisfied almost surely replaced gD(t, x, y) by the Neumann kernel gN (t, x, y), please see
Chapter 3 [22] for its precise meaning. In addition, for the introduction to stochastic partial
differential equations, we also refer the reader to [5] for more information.

Since our topics are closely dependent on the noise intensity λ, we will denote by uλ(t, x) the
solution of (1.1) with homogeneous Dirichlet boundary conditions. Let p ≥ 2 in this paper and
then for any real valued measurable function u defined on [0, 1], let ∥u∥L p denote its L p-norm
on [0, 1]. In particular, let us recall that for p = ∞, ∥u∥L∞ = ess supx∈[0,1]|u(x)|.
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