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Abstract

We discuss the construction and approximation of solutions to a nonlinear McKean—Vlasov equation
driven by a singular self-excitatory interaction of the mean-field type. Such an equation is intended to de-
scribe an infinite population of neurons which interact with one another. Each time a proportion of neurons
‘spike’, the whole network instantaneously receives an excitatory kick. The instantaneous nature of the
excitation makes the system singular and prevents the application of standard results from the literature.
Making use of the Skorohod M1 topology, we prove that, for the right notion of a ‘physical’ solution, the
nonlinear equation can be approximated either by a finite particle system or by a delayed equation. As a
by-product, we obtain the existence of ‘synchronized’ solutions, for which a macroscopic proportion of
neurons may spike at the same time.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Recently several rigorous studies [3—5,7] have been concerned with a mean-field equation
modeling the behavior of a very large (infinite) network of interacting spiking neurons proposed
in [14] (see also [1,8,10,12] and references therein for other types of mean-field models mo-
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tivated by neuroscience). As a nonlinear SDE in one-dimension the equation for the electrical
potential X, across any typical neuron in the network at time ¢ takes the form

t
Xt = X() +/ b(Xg‘)dS +(X]E(Mt) + Wt — Mtv t > O, (11)
0

where Xo < 1 almost surely, (W;);>0 is a standard Brownian motion and b is a Lipschitz func-
tion of linear growth. Here « is a parameter in (0, 1) and the process M = (M;);>0 counts the
number of times that X = (X,),;>0 reaches 1 before time ¢, so that it is integer-valued (see Sec-
tion 2 for a precise description). The idea is that when X reaches the threshold 1, M instantly
increases by 1 so that X is reset to a value below the threshold, and we say that the neuron has
spiked. Throughout the article we will write e(¢) := E(M,).

Eq. (1.1) is in fact nontrivial, since the form of the nonlinearity is not regular enough for the
application of the standard McKean—Vlasov theory [13,17]. Indeed, the problem is that, on the
infinitesimal level, the mean-field term in (1.1) reads as €'(t) = [d/dt]E(M;), which is by no
means regular with respect to the law of X;. In [7], it is proven that ¢'(f) = —(1/2)dyp(z, 1),
where p(t, y)dy = P(X; € dy) is the marginal density of X;, which shows how singular the
dependence of ¢'(r) upon the law of X, is. As such, most of the previous work studying this
equation has been focused on the existence of a solution and its properties, bringing to light
some nontrivial mechanisms.

The main point is that, for some choices of parameters (¢ too big for fixed X concentrated
close to the boundary), any solution to (1.1) must exhibit what has been described as a ‘blow-up’
in finite time. More precisely this means that ¢’ (r) (which is the mean-firing rate of the network at
time ¢) must become infinite for some finite 7. This was done in [3] by means of a PDE method.
Interpreting (1.1) as a description of an infinite network of neurons, a blow-up is thus a time at
which a proportion of all the neurons in the network spike at exactly the same time, which we
refer to as a synchronization. Despite the interest in this phenomena, up until now it has been
unclear how to continue a solution after a blow-up. On the other hand, in [7] it was shown by
probabilistic arguments that for other choices of parameters (o small enough for fixed Xy = xg),
(1.1) has a unique solution for all time which does not exhibit the blow-up phenomenon. These
two complementary results are made precise in Theorems 2.3 and 2.4.

The aim of the present work is to provide further insight into this nonlinear equation by pro-
viding two ways of approximating (and moreover constructing) a solution. The first is via the
natural particle system associated to (1.1), which describes the behavior of the finite network of
neurons. In fact, the introduction of (1.1) in [14] is inspired from this finite dimensional system:
it is there asserted that, when the size of the network becomes infinite, neurons become inde-
pendent and evolve according to (1.1). However, the proof of this fact (which is a propagation
of chaos result) is not given. The first of our main objectives is to fill this gap and to rigorously
show that any weak limit of the particle system must be a solution to (1.1) (see Theorem 4.4). In
particular, we show that the particle system converges to the solution of (1.1) whenever unique-
ness holds, in which case propagation of chaos holds as well. Again, due to the irregularity and
nature of the particle system, this result is in fact more difficult than it might appear. The second
objective is to recover a similar result when approximating the self-interaction in (1.1) by de-
layed self-interactions (see Theorem 4.6). The motivation for considering the delayed equation
(which is still nonlinear) is that it never exhibits a blow-up phenomenon, even with « close to 1,
making it easier to handle (see Proposition 3.5).

In both cases, the strategy relies on two ingredients. First, we show that there exists a notion
of ‘physical’ solutions to Eq. (1.1) for which spikes occur physically, in a ‘sequential” way. The
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