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Abstract

We investigate the invariance principle in Hölder spaces for strictly stationary martingale difference
sequences. In particular, we show that the sufficient condition on the tail in the i.i.d. case does not extend
to stationary ergodic martingale differences. We provide a sufficient condition on the conditional variance
which guarantee the invariance principle in Hölder spaces. We then deduce a condition in the spirit of
Hannan one.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main problems in probability theory is the understanding of the asymptotic behav-
ior of Birkhoff sums Sn( f ) :=

n−1
j=0 f ◦ T i , where (Ω , F , µ, T ) is a dynamical system and f

a map from Ω to the real line.
One can consider random functions constructed from the Birkhoff sums

Spl
n ( f, t) := S[nt]( f ) + (nt − [nt]) f ◦ T [nt]+1, t ∈ [0, 1] (1.1)
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and investigate the asymptotic behavior of the sequence


Spl
n ( f, t)


n≥1

seen as an element of

a function space. Donsker showed (cf. [4]) that the sequence (n−1/2(E( f 2))−1/2Spl
n ( f ))n≥1

converges in distribution in the space of continuous functions on the unit interval to a standard
Brownian motion W when the sequence ( f ◦ T i )i≥0 is i.i.d. and zero mean. Then an intensive
research has then been performed to extend this result to stationary weakly dependent sequences.
We refer the reader to [9] for the main theorems in this direction.

Our purpose is to investigate the weak convergence of the sequence (n−1/2Spl
n ( f ))n≥1 in

Hölder spaces when ( f ◦ T i )i≥0 is a strictly stationary sequence. A classical method for showing
a limit theorem is to use a martingale approximation, which allows to deduce the corresponding
result if it holds for martingale difference sequences provided that the approximation is good
enough. To the best of our knowledge, no result about the invariance principle in Hölder space
for stationary martingale difference sequences is known.

1.1. The Hölder spaces

It is well known that standard Brownian motion’s paths are almost surely Hölder regular of
exponent α for each α ∈ (0, 1/2), hence it is natural to consider the random function defined in
(1.1) as an element of Hα[0, 1] and try to establish its weak convergence to a standard Brownian
motion in this function space.

Before stating the results in this direction, let us define for α ∈ (0, 1) the Hölder space
Hα[0, 1] of functions x : [0, 1] → R such that sups≠t |x(s) − x(t)| / |s − t |α is finite. The ana-
logue of the continuity modulus in C[0, 1] is wα , defined by

wα(x, δ) = sup
0<|t−s|<δ

|x(t) − x(s)|

|t − s|α
. (1.2)

We then define H0
α[0, 1] by H0

α[0, 1] := {x ∈ Hα[0, 1], limδ→0 wα(x, δ) = 0}. We shall es-
sentially work with the space H0

α[0, 1] which, endowed with ∥x∥α := wα(x, 1) + |x(0)|, is
a separable Banach space (while Hα[0, 1] is not separable). Since the canonical embedding
ι: Ho

α[0, 1] → Hα[0, 1] is continuous, each convergence in distribution in Ho
α[0, 1] also takes

place in Hα[0, 1].
Let us denote by D j the set of dyadic numbers in [0, 1] of level j , that is,

D0 := {0, 1} , D j :=


(2l − 1)2− j

; 1 ≤ l ≤ 2 j−1


, j ≥ 1. (1.3)

If r ∈ D j for some j ≥ 0, we define r+
:= r + 2− j and r−

:= r − 2− j . For r ∈ D j , j ≥ 1,
let Λr be the function whose graph is the polygonal path joining the points (0, 0), (r−, 0), (r, 1),
(r+, 0) and (1, 0). We can decompose each x ∈ C[0, 1] as

x =


r∈D

λr (x)Λr =

+∞
j=0


r∈D j

λr (x)Λr , (1.4)

and the convergence is uniform on [0, 1]. The coefficients λr (x) are given by

λr (x) = x(r) −
x(r+) + x(r−)

2
, r ∈ D j , j ≥ 1, (1.5)

and λ0(x) = x(0), λ1(x) = x(1).
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