

Available online at www.sciencedirect.com

stochastic processes and their applications

Stochastic Processes and their Applications 124 (2014) 1469-1502

www.elsevier.com/locate/spa

Level set percolation for random interlacements and the Gaussian free field

Pierre-François Rodriguez*

Departement Mathematik, ETH Zürich, CH-8092 Zürich, Switzerland

Received 29 July 2013; received in revised form 8 December 2013; accepted 17 December 2013 Available online 25 December 2013

Abstract

We consider continuous-time random interlacements on \mathbb{Z}^d , $d \ge 3$, and investigate the percolation model where a site x of \mathbb{Z}^d is occupied if the total amount of time spent at x by all the trajectories of the interlacement at level $u \ge 0$ exceeds some constant $\alpha \ge 0$, and empty otherwise. We also examine percolation properties of empty sites. A recent isomorphism theorem (Sznitman, 2012) enables us to "translate" some of the relevant questions into the language of level-set percolation for the Gaussian free field on \mathbb{Z}^d , $d \ge 3$, about which new insights of independent interest are also gained. © 2013 Elsevier B.V. All rights reserved.

Keywords: Percolation; Long-range dependence; Gaussian free field; Random interlacements; Level sets

0. Introduction

In the present work, we consider the field of occupation times for continuous-time random interlacement at level $u \ge 0$ on \mathbb{Z}^d , $d \ge 3$, and investigate the percolative properties of the random subset of \mathbb{Z}^d obtained by keeping only those sites at which the occupation time exceeds some given cut-off value $\alpha \ge 0$. We also consider the percolative properties of the complement of this set in \mathbb{Z}^d . Our main interest is to infer for which values of the parameters (u, α) these random sets percolate. A recent isomorphism theorem [15] relates the field of occupation times for continuous-time random interlacements on \mathbb{Z}^d , $d \ge 3$ (and more generally, on any transient weighted graph) to the Gaussian free field on the same graph. We will exploit this correspondence as a transfer mechanism to reformulate some of the problems in terms of

* Tel.: +41 446328273.

E-mail address: pierre.rodriguez@math.ethz.ch.

^{0304-4149/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.spa.2013.12.009

questions regarding level-set percolation for the Gaussian free field. This will allow us to use certain renormalization techniques recently developed in this context in [11]. Additionally, we derive new results concerning "two-sided" level-set percolation for the Gaussian free field on \mathbb{Z}^d , $d \ge 3$, where, in contrast to (0.2) of [11] (see also [2]), the level sets consist of those sites at which the *absolute value* of the corresponding field variable exceeds a certain level $h \ge 0$.

We now describe our results and refer to Section 1 for details. We consider continuous-time random interlacements on \mathbb{Z}^d , $d \ge 3$. Somewhat informally, this model can be defined as a cloud of simple random walk trajectories modulo time-shift on \mathbb{Z}^d constituting a Poisson point process, where a non-negative parameter u appearing multiplicatively in the intensity measure regulates how many paths enter the picture (we defer a precise definition to the next section, see the discussion around (1.8)). For any $u \ge 0$ and $\alpha \ge 0$, we introduce the (random) subsets of \mathbb{Z}^d

$$\mathcal{I}^{u,\alpha} = \{ x \in \mathbb{Z}^d ; L_{x,u} > \alpha \}, \qquad \mathcal{V}^{u,\alpha} = \{ x \in \mathbb{Z}^d ; L_{x,u} \le \alpha \} = \mathbb{Z}^d \setminus \mathcal{I}^{u,\alpha}, \tag{0.1}$$

where $(L_{x,u})_{x\in\mathbb{Z}^d}$ denotes the field of occupation times at level u, see (1.15), and ask for which values of the parameters u and α these sets percolate. Note that for all $u \ge 0$, $\mathcal{I}^{u,0}$ corresponds to the (discrete-time) interlacement set at level u introduced in (0.7) of [14] (see also (1.9) and (1.16) below) and $\mathcal{V}^{u,0}$ to the according vacant set. Before addressing the core issue of describing the phase diagrams for percolation of the random sets $\mathcal{I}^{u,\alpha}$ and $\mathcal{V}^{u,\alpha}$, as u and α vary, we prove uniqueness of the infinite clusters, whenever they exist. More precisely, we show in Corollary 2.6 that for all $u \ge 0$, $\alpha > 0$ and $d \ge 3$,

$$\mathbb{P}$$
-a.s., $\mathcal{I}^{u,\alpha}$ and $\mathcal{V}^{u,\alpha}$ contain *at most one* infinite connected component, (0.2)

where \mathbb{P} denotes the law of the interlacement point process, as defined below (1.8). For $\alpha = 0$, (0.2) is already known and follows from [14], Corollary 2.3, and [17], Theorem 1.1.

Our main results concern the existence/absence of infinite clusters inside $\mathcal{I}^{u,\alpha}$ and $\mathcal{V}^{u,\alpha}$, in terms of the parameters u and α . Let us define the functions

$$\eta^{\mathcal{I}}(u,\alpha) = \mathbb{P}\big[0 \stackrel{\mathcal{I}^{u,\alpha}}{\longleftrightarrow} \infty\big], \qquad \eta^{\mathcal{V}}(u,\alpha) = \mathbb{P}\big[0 \stackrel{\mathcal{V}^{u,\alpha}}{\longleftrightarrow} \infty\big], \quad \text{for } u \ge 0, \alpha \ge 0, \qquad (0.3)$$

to denote the probabilities that 0 lies in an infinite cluster of $\mathcal{I}^{u,\alpha}$ and $\mathcal{V}^{u,\alpha}$, respectively. Observing that $\eta^{\mathcal{I}}(u,\alpha)$ is decreasing in α for every (fixed) value of $u \ge 0$, it is sensible to introduce the critical parameter

$$\alpha_*(u) = \inf\{\alpha \ge 0; \, \eta^{\mathcal{I}}(u, \alpha) = 0\} \in [0, \infty], \quad \text{for } u \ge 0 \tag{0.4}$$

(with the convention $\inf \emptyset = \infty$). It is not difficult to see that the function $\alpha_*(\cdot)$ is non-decreasing, see (5.1) below. Our main results regarding percolation of the sets $\mathcal{I}^{u,\alpha}$ state that

$$0 < \alpha_*(u) < \infty$$
, for all $u > 0$ and $d \ge 3$ (0.5)

(see Theorem 3.1 for positivity of $\alpha_*(u)$ and Theorem 5.1 for finiteness). In words, the sets $\mathcal{I}^{u,\alpha}$ exhibit a non-trivial percolation phase transition as α varies, for every (fixed) positive value of u.

In a similar vein, for $\mathcal{V}^{u,\alpha}$, we introduce the critical parameter

$$u_*(\alpha) = \inf\{u \ge 0; \, \eta^{\mathcal{V}}(u, \alpha) = 0\} \in [0, \, \infty], \quad \text{for } \alpha \ge 0, \tag{0.6}$$

which is well-defined since $\eta^{\mathcal{V}}(\cdot, \alpha)$ is non-increasing for every value of $\alpha \ge 0$ (we will comment on the asymmetry in the role of u and α in (0.4) and (0.6) below; see the discussion following (0.14)). It is an easy matter to verify that the function $u_*(\cdot)$ is non-decreasing, see (5.6), and that Download English Version:

https://daneshyari.com/en/article/1155529

Download Persian Version:

https://daneshyari.com/article/1155529

Daneshyari.com