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Abstract

We define a covariance-type operator on Wiener space: for F and G two random variables in the
Gross–Sobolev space D1,2 of random variables with a square-integrable Malliavin derivative, we let

ΓF,G :=


DF, −DL−1 G


, where D is the Malliavin derivative operator and L−1 is the pseudo-inverse

of the generator of the Ornstein–Uhlenbeck semigroup. We use Γ to extend the notion of covariance and
canonical metric for vectors and random fields on Wiener space, and prove corresponding non-Gaussian
comparison inequalities on Wiener space, which extend the Sudakov–Fernique result on comparison of
expected suprema of Gaussian fields, and the Slepian inequality for functionals of Gaussian vectors. These
results are proved using a so-called smart-path method on Wiener space, and are illustrated via various
examples. We also illustrate the use of the same method by proving a Sherrington–Kirkpatrick universality
result for spin systems in correlated and non-stationary non-Gaussian random media.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The canonical metric of a centered field G on an index set T is the square root of the
quantity δ2

G (s, t) = E

(G t − Gs)

2, s, t ∈ T . When G is Gaussian, this δ2 characterizes
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much of G ’s distribution, and is useful in various contexts for estimating G’s behavior, from
its modulus of continuity, to its expected supremum; see [1] for an introduction. The canonical
metric, together with the variances of G, are of course equivalent to the covariance function
QG (s, t) = E [G t Gs], which defines G’s law when G is Gaussian. In this article, we concentrate
on comparison results for expectations of suprema and other types of functionals, beyond the
Gaussian context, by using an extension of the concepts of covariance and canonical metric on
Wiener space. We introduce these concepts now. For the details of analysis on Wiener space
needed for the next definitions, including the spaces D1,p (p > 1) and the operators D and L−1,
see Chapter 1 in [14] or Chapter 2 in [10]. The notion of a ‘separable random field’ is formally
defined e.g. in [2, p. 8].

Definition 1.1. Consider an isonormal Gaussian process W defined on the probability space
(Ω , F , P), and associated with the real separable Hilbert space H: recall that this means that W =

{W (h) : h ∈ H} is a centered Gaussian family such that E [W (h) W (k)] = ⟨h, k⟩H. Let D1,2 be
the Gross–Sobolev space of random variables F with a square-integrable Malliavin derivative,
i.e. such that DF ∈ L2 (Ω × H). We denote the generator of the associated Ornstein–Uhlenbeck
operator by L . For a pair of random variables F, G ∈ D1,2, we define a covariance-type operator
by

ΓF,G := ⟨DF, −DL−1G⟩H. (1.1)

Let F = {Ft }t∈T be a separable random field on an index set T , such that Ft ∈ D1,2 for each
t ∈ T . The analogue for the operator Γ of the covariance of F is denoted by

ΓF (s, t) := ΓFs ,Ft = ⟨D(Ft ), −DL−1(Fs)⟩H. (1.2)

The analogue for Γ of the canonical metric δ2 of F is denoted by

∆F (s, t) := ⟨D(Ft − Fs), −DL−1(Ft − Fs)⟩H. (1.3)

Remark 1.2. (i) When F = {Ft }t∈T is in the first Wiener chaos, and hence is a centered
Gaussian field, ΓF coincides with its covariance function QF .

(ii) In general, the random variable ∆F (s, t) is not positive. However, according e.g. to [9,
Proposition 3.9], one has that E[∆F (s, t)|Ft − Fs] > 0, a.s.-P.

(iii) In general, we do not have ΓF,G = ΓG,F . However, Γ does extend the notion of covariance
for centered random variables, in the sense that E[ΓF,G] = E[FG]. More generally, if F
and G are in the same Wiener chaos, then ΓF,G = ΓG,F , but this symmetry does not extend
in general beyond such special cases.

The extension of the concept of covariance function given above in (1.1) appeared
in [3,11], respectively in the study of densities of random vectors and of multivariate normal
approximations, both on Wiener space. Comparison results on Wiener space have, in the past,
focused on concentration or Poincaré inequalities: see [19]. Recently, the scalar analogue of the
covariance operator above, i.e. ΓF,F , was exploited to derive sharp tail comparisons on Wiener
space, in [13,20].

The two main types of comparison results we will investigate herein are those of
Sudakov–Fernique type and those of Slepian type. See [1,2] for details of the classical proofs.

In the basic Sudakov–Fernique inequality, one considers two centered separable Gaussian
fields F and G on T , such that δ2

F (s, t) > δ2
G (s, t) for all s, t ∈ T ; then E


supT F


>

E

supT G


. Here T can be any index set, as long as the laws of F and G can be determined



Download English Version:

https://daneshyari.com/en/article/1155532

Download Persian Version:

https://daneshyari.com/article/1155532

Daneshyari.com

https://daneshyari.com/en/article/1155532
https://daneshyari.com/article/1155532
https://daneshyari.com

