Accepted Manuscript

Full Length Article

Advanced Li-ion Hybrid Capacitors Based on the Nanostructured Ruthenium Oxide on MWCNTs

Peiyu Wang, Guoheng Zhang, Haiyan Jiao, Wanjun Chen, Liwei Liu, Xiangli Wang, Qiong Chen, Xiaoyan Deng, Xiaoping Zheng

PII: S0169-4332(18)32861-7

DOI: https://doi.org/10.1016/j.apsusc.2018.10.105

Reference: APSUSC 40673

To appear in: Applied Surface Science

Received Date: 4 July 2018

Revised Date: 19 September 2018 Accepted Date: 12 October 2018

Please cite this article as: P. Wang, G. Zhang, H. Jiao, W. Chen, L. Liu, X. Wang, Q. Chen, X. Deng, X. Zheng, Advanced Li-ion Hybrid Capacitors Based on the Nanostructured Ruthenium Oxide on MWCNTs, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.10.105

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Advanced Li-ion Hybrid Capacitors Based on the Nanostructured Ruthenium Oxide on MWCNTs Peiyu Wang^{a,*},wangpy03@126.com, Guoheng Zhang^a, Haiyan Jiao^a, Wanjun Chen^a, Liwei Liu^a, Xiangli Wang^a, Qiong Chen^a, Xiaoyan Deng^a, Xiaoping Zheng^b

^aKey Laboratory for Electronic Materials of the State Ethnic Affairs Commission of PRC, College of Electric Engineering, Northwest MinZu University, Lanzhou, Gansu 730030, P. R. China.

^bLanzhou City University, Lanzhou 730070, China

Highlights

The RuO₂/MWCNT showed high specific capacity, outstanding rate performance and long cycling stability under a Li-ion organic electrolyte.

Advanced Li-ion hybrid capacitors (LIHCs) were successfully constructed with RuO₂/MWCNT anode and activated ployaniline derived carbon (APDC) cathode under a Li-ion organic electrolyte. The LIHCs exhibited a highest energy density of 146 Wh kg⁻¹ and a highest power densities of 33 kW kg⁻¹, with excellent cyclic stability (~100 % at 2.0 A g⁻¹ after 15000 cycles), which exhibited better performance than other LIHCs systems.

Abstract

Here, the porous ruthenium oxide/multi-walled carbon nanocomposite (RuO₂/MWCNT) was prepared using a facile precipitation method. The RuO₂/MWCNT showed high specific capacity, outstanding rate performance and long cycling stability under a Li-ion organic electrolyte. Thus, advanced Li-ion hybrid capacitors (LIHCs) were successfully constructed with RuO₂/MWCNT anode and activated ployaniline derived carbon (APDC) cathode under a Li-ion organic electrolyte. The LIHCs exhibited a highest energy density of 146 Wh kg⁻¹ and a highest power densities of 33 kW kg⁻¹, with excellent cyclic stability (~100 % at 2.0 A g⁻¹ after 15000 cycles), which exhibited better performance than other LIHCs systems.

Keywords: Li-ion hybrid capacitors; Ruthenium oxide/multi-walled carbon; Energy density; Power density

1. Introduction

In recent years, with the rapid development of clean renewable energy, multifunction portable electronic equipment and large energy storage system has been proposed higher requirements for energy storage devices, such as fast charge capacity, long cycling life and high energy density [1]. Li-ion hybrid capacitors (LIHCs) which can unite the merits of supercapacitors and Li-ion batteries emerge to

^{*}Corresponding author.

Download English Version:

https://daneshyari.com/en/article/11555431

Download Persian Version:

https://daneshyari.com/article/11555431

<u>Daneshyari.com</u>