

Available online at www.sciencedirect.com

stochastic processes and their applications

Stochastic Processes and their Applications 125 (2015) 458-481

www.elsevier.com/locate/spa

Extreme slowdowns for one-dimensional excited random walks

Jonathon Peterson*

Purdue University, Department of Mathematics, 150 N University Street, West Lafayette, IN 47907, USA

Received 20 December 2013; received in revised form 20 September 2014; accepted 22 September 2014 Available online 1 October 2014

Abstract

We study the asymptotics of the probabilities of extreme slowdown events for transient one-dimensional excited random walks. That is, if $\{X_n\}_{n\geq 0}$ is a transient one-dimensional excited random walk and $T_n = \min\{k : X_k = n\}$, we study the asymptotics of probabilities of the form $P(X_n \leq n^{\gamma})$ and $P(T_{n^{\gamma}} \geq n)$ with $\gamma < 1$. We show that there is an interesting change in the rate of decay of these extreme slowdown probabilities when $\gamma < 1/2$.

© 2014 Elsevier B.V. All rights reserved.

MSC: primary 60K35; secondary 60F10; 60J15; 60K37

Keywords: Excited random walk; Large deviations

1. Introduction and main results

Excited random walks are a model of self-interacting random walks where the transition probabilities are a function of the local time of the random walk at the current location. The model of excited random walks was first introduced by Benjamini and Wilson in [3], but has since been generalized by Zerner [17] and more recently by Kosygina and Zerner [12]. For

http://dx.doi.org/10.1016/j.spa.2014.09.017

^{*} Tel.: +1 765 496 3578; fax: +1 765 494 0458.

E-mail addresses: peterson@purdue.edu, peterson@math.purdue.edu.

URL: http://www.math.purdue.edu/~peterson.

^{0304-4149/© 2014} Elsevier B.V. All rights reserved.

the case of one-dimensional excited random walks, the model can be described as follows. A *cookie environment* is an element $\omega = \{\omega(x, j)\}_{x \in \mathbb{Z}, j \ge 1} \in [0, 1]^{\mathbb{Z} \times \mathbb{N}} =: \Omega$. For a fixed cookie environment ω we can define a self-interacting random walk on \mathbb{Z} so that on the *j*th visit of the random walk to the site *x*, the random walk steps to the right with probability $\omega(x, j)$ and to the left with probability $1 - \omega(x, j)$. That is, $\{X_n\}_{n \ge 0}$ is a stochastic process with law P_{ω} such that

$$P_{\omega}(X_{n+1} = X_n + 1 \mid \mathcal{F}_n) = 1 - P_{\omega}(X_{n+1} = X_n - 1 \mid \mathcal{F}_n)$$
$$= \omega(X_n, \#\{k \le n : X_k = X_n\}),$$

where $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$. One can start the excited random walk at any $x \in \mathbb{Z}$, but in this paper we will always start the excited random walks at $X_0 = 0$.

We will allow the cookie environments to be random, chosen from a distribution \mathbb{P} on the space Ω of cookie environments (equipped with the standard product topology). The distribution P_{ω} of the random walk in a fixed cookie environment is the *quenched* law of the random walk. Since the environment ω is random, P_{ω} is a conditional probability distribution, and the *averaged* law P of the excited random walk is defined by averaging the quenched law over all environments. That is, $P(\cdot) = \mathbb{E}[P_{\omega}(\cdot)]$, where \mathbb{E} denotes expectation with respect to the distribution \mathbb{P} on environments.

The terminology "cookie environment" is traced back to Zerner's paper [17] where he envisioned a stack of "cookies" at each site. Upon each visit to a site, the random walker eats a cookie (removing it from the stack) and the cookie induces a specific drift on the random walker.¹ Most of the results for one-dimensional excited random walks are under the assumption of a bounded number of cookies per site and i.i.d. stacks of cookies. More specifically, we will assume the following.

Assumption 1. There exists an $M < \infty$ such that $\mathbb{P}(\omega \in \Omega_M) = 1$, where

 $\Omega_M = \{ \omega \in \Omega : \, \omega(x, j) = 1/2 \text{ for all } x \in \mathbb{Z}, \, j > M \}.$

Assumption 2. The distribution \mathbb{P} on cookie environments ω is such that $\{\omega(x, \cdot)\}_{x \in \mathbb{Z}}$ is i.i.d. under the measure \mathbb{P} .

Assumption 1 is said to be the assumption of M cookies per site because one imagines that after the M cookies at a site have been removed, upon further returns to that site there are no cookies to "excite" the walk and so the walk moves as a simple symmetric random walk. Note that Ω_M is obviously isomorphic to the space $[0, 1]^{\mathbb{Z} \times M}$.

In addition to the above assumptions on the cookie environments, we will also need the following non-degeneracy assumption on the cookie environments.

Assumption 3. The distribution \mathbb{P} on cookie environments is such that

$$\mathbb{E}\left[\prod_{j=1}^{M}\omega(0,j)\right] > 0, \quad \text{and} \quad \mathbb{E}\left[\prod_{j=1}^{M}(1-\omega(0,j))\right] > 0.$$

¹ For this reason excited random walks are also sometimes called "cookie random walks".

Download English Version:

https://daneshyari.com/en/article/1155547

Download Persian Version:

https://daneshyari.com/article/1155547

Daneshyari.com