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Abstract

In this paper we present some new asymptotic results for high frequency statistics of Brownian
semi-stationary (B S S ) processes. More precisely, we will show that singularities in the weight function,
which is one of the ingredients of a B S S process, may lead to non-standard limits of the realised quadratic
variation. In this case the limiting process is a convex combination of shifted integrals of the intermittency
function. Furthermore, we will demonstrate the corresponding stable central limit theorem. Finally, we ap-
ply the probabilistic theory to study the asymptotic properties of the realised ratio statistics, which estimates
the smoothness parameter of a B S S process.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In the last years Brownian semi-stationary processes and their tempo-spatial extensions,
ambit fields, have been widely studied in the literature. This class of models has been originally
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proposed by Barndorff-Nielsen and Schmiegel [8] in the context of turbulence modelling. In their
general form, Brownian semi-stationary processes without drift are defined as

X t = µ +

 t

−∞

g(t − s)σs W (ds), t ∈ R

where µ is a constant, W is a Brownian measure on R, g : R → R is a deterministic weight
function with g(t) = 0 for t ≤ 0, and σ is a càdlàg processes. If σ is stationary and independent
of W , then (X t )t∈R is stationary, which explains the name Brownian semi-stationary process. In
the framework of turbulence modelling, (X t )t∈R denotes the velocity of a turbulent flow in the
direction of the mean field measured at a fixed point in space. The stochastic process (σt )t∈R
embodies the intermittency of the dynamics of X . We refer to [8,10,9,11] for application of
Brownian semi-stationary processes and ambit fields to turbulence modelling, and to [2,7] for
further applications in mathematical finance and biology.

Recently, probabilistic properties of high frequency statistics of B S S processes have been
investigated in several papers. We refer to a series of articles [4,5,13], which studies the
asymptotic behaviour of (multi)power variation of B S S models. Typically, the weight function
g considered in the aforementioned work has the form

g(x) = xα f (x), α ∈ (−1/2, 0) ∪ (0, 1/2),

where f is a sufficiently smooth function slowly varying at 0 and with rapid decay at infinity.
This type of weight functions satisfies g ∈ L2(R), but g′

∉ L2(R) since g′ is not square
integrable near 0; in other words, the latter property means that 0 is the only singularity point
of the weight function g. As a consequence, the process X is not a semimartingale. Moreover,
its local behaviour corresponds to the one of a fractional Brownian motion with Hurst parameter
H = α + 1/2.

Understanding the limit theory for B S S processes requires an analysis of the following
probability measure. For any A ∈ B(R), we define

πn(A) :=


A{g(x + ∆n) − g(x)}2dx
R{g(x + ∆n) − g(x)}2dx

. (1.1)

In the setting of weight functions as above, we deduce that πn
d

−→ δ0 as ∆n → 0, where δ0
denotes the Dirac measure at 0 (cf. [4]). In this case the limit of the power variation of a B S S
process is given as

∆nτ
−p
n

[t/∆n ]
i=1

|X i∆n − X(i−1)∆n |
p u.c.p.

H⇒ m p

 t

0
|σs |

pds, as ∆n → 0, (1.2)

where m p = E[|N (0, 1)|p
], τn is a certain normalising sequence and

u.c.p.
H⇒ stands for conver-

gence in probability uniformly on compact sets. In [4,5] the asymptotic mixed normality of
(multi)power variation is proved and the paper [13] studies the application of the limit theory
to estimation of the smoothness parameter α. We remark that the asymptotic results are quite
similar to the theory of power variations of continuous Itô semimartingales (cf. [6,15] among
many others), although the methodologies of proofs are completely different.
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