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Abstract

A probabilistic construction for the solution of a general class of high order heat-type equations is
constructed in terms of the scaling limit of random walks in the complex plane.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The connection between the solution of parabolic equations associated to second-order elliptic
operators and the theory of stochastic processes is a largely studied topic [10]. The main instance
is the Feynman–Kac formula (2), providing a representation of the solution of the heat equation
(1) with possibly a potential V ∈ C∞

0 (R
d)

∂

∂t
u(t, x) =

1
2
1u(t, x)− V (x)u(t, x), t ∈ R+, x ∈ Rd

u(0, x) = u0(x)
(1)
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in terms of an integral with respect to the measure of the Wiener process, the mathematical model
of the Brownian motion [19]:

u(t, x) = Ex

e−

 t
0 V (ω(s))dsu0(ω(t))


. (2)

If the Laplacian in Eq. (1) is replaced by an higher order differential operator, i.e. if we consider
for instance a Cauchy problem of the form

∂

∂t
u(t, x) = (−1)M+1∆M u(t, x)− V (x)u(t, x), t ∈ R+, x ∈ R,

u(0, x) = u0(x)
(3)

where M > 1 is an integer, then a formula analog to (2), giving the solution of (3) in terms of
the expectation with respect to the measure associated to a Markov process, is lacking. In fact,
such a formula cannot be proven for semigroups whose generator does not satisfy the maximum
principle, as in the case of ∆M with M > 1 [31].

One of the reasons making the higher powers of the Laplacian and Eq. (3) more difficult
to handle than the traditional heat equation is the fact that, unlike the case where M = 1, for
M > 1 the fundamental solution G t (x, y), t ∈ R+, x, y ∈ R, is not positive. In fact it has an
oscillatory behavior, changing sign an infinite number of times [14]. Consequently it cannot be
interpreted as the density of a positive probability measure, as the Gaussian transition densities of
the Brownian motion, but only as the density of a signed measure. This fact has the troublesome
consequence that if one uses G as a signed transition probability density in the construction of a
generalized stochastic process with real path and independent increments, the resulting measure
on R[0,+∞) would have infinite total variation. This fact was pointed out in [21] and can be
regarded as a particular case of a general result by E. Thomas [32], generalizing Kolmogorov
existence theorem to projective families of signed or complex measures instead of probability
measures. In other words it is not possible to find a stochastic process X t which plays for the
parabolic equation (5) the same role that the Wiener process plays for the heat equation.

We would like to point out that the problem of the probabilistic representation of the solution
of the Cauchy problem (3) presents some similarities with the problem of the mathematical
definition of Feynman path integrals and the functional integral representation for the solution
of the Schrödinger equation (see [27,18] for a discussion of this topic). Indeed in both cases it is
not possible to implement an integration theory of Lebesgue type in terms of a bounded variation
measure on a space of real paths [8]. This means that an analog of the Feynman–Kac formula for
the parabolic equation (3), namely a representation for its solution of the form:

u(t, x) =


ω(0)=x

e−
 t

0 V (ω(s))dsu0(ω(t))dPM (ω), (4)

(where PM should be some “measure” on a space of “paths” ω : [0, t] → R) cannot be realized
in terms of a well defined Lebesgue-type integral, but, in a weaker sense, in terms of a linear
functional on a suitable class of “integrable functions”, under some restrictions on the initial
datum u0 and the potential V . An analog approach has been successfully implemented in the
case of the Schrödinger equation [1].

Several attempts have been made to relate such problem, as in the case M = 1, to a random
process, in particular for the case M = 2 (known in the literature as the biharmonic operator).

One of the first approaches was introduced by Krylov [21] and continued by Hochberg [14],
who introduced a stochastic pseudo-process whose transition probability function is not positive
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