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The stochastic fluid–fluid model: A stochastic fluid
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Abstract

We introduce the Stochastic Fluid–Fluid Model, which offers powerful modeling ability for a wide
range of real-life systems of significance. We first derive the infinitesimal generator, with respect to time,
of the driving stochastic fluid model. We then use this to derive the infinitesimal generator of a particular
Laplace–Stieltjes transform of the model, which is the foundation of our analysis. We develop expressions
for the Laplace–Stieltjes transforms of various performance measures for the transient and limiting analysis
of the model. This work is the first direct analysis of a stochastic fluid model that is Markovian on a
continuous state space.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Many important systems which provide essential services for society are complex and
dynamic, and operate in an uncertain environment. Managers of such systems need to be able
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to make properly informed decisions. Wrong decisions may have catastrophic effects on the
performance of the system. An example of engineering importance here is the dimensioning and
management of a router buffer in the Internet, which poses a complex and dynamic problem
in a particularly uncertain environment. Sources of uncertainty for this problem include human
behavior, the state of interacting parts of the Internet and the availability of shared resources.
Designers of such systems need to be able to evaluate performance measures of their systems.
These assist managers to make properly informed decisions. For this evaluation, appropriate
stochastic models are necessary.

The uncertainty of such systems has been a major difficulty, as very complex, often large-scale
systems, require more advanced models than the classical models that have been used in the past.
Naturally, from the practical point of view, excessively complicated models are not desired either.
Instead, flexible models which are parsimonious and computationally effective, are required.

Inspired by the engineering problems of the nature described above, primarily in high-speed
telecommunications networks, a rapid development of novel, promising results in the area known
as stochastic fluid models (SFMs) has been observed in recent years [1–6,10,12–16,28,29].
Stochastic fluid models are stochastic models with a state-space which can be thought of as two
dimensional, consisting of a continuous level variable X (t) and a finite phase variable ϕ(t) ∈ S ,
where S is some finite set. The phase variable ϕ(t) is often used to describe the state of the
environment at time t , while the level variable X (t) is used to describe some continuous aspect
of the system at time t . Simple examples of two-phase processes are on/off mode of a source in
a telecommunications buffer, peak/off-peak period in a telephone network, or wet/dry season in
reservoir modeling. The level variable in these examples could be used to record the amount of
data in the buffer, the number of customers in the network (which are both naturally discrete, but
so large that we can think of them as a fluid), and the water level in the reservoir, respectively. In
general, models with any (finite) number of phases are analyzed, and so the application potential
extends far beyond the simplistic examples listed here. The model assumes that the transitions
between phases occur according to the generator matrix T of some continuous-time Markov
chain {ϕ(t), t ≥ 0}. Furthermore, this underlying Markov chain affects the level variable X (t) in
the following way. At time t , when {ϕ(t), t ≥ 0} is in some phase i ∈ S , the rate of increase of
the fluid level is given by the constant ci , which may be positive, negative or zero. For example,
in reservoir modeling we could assume that when the phase is dry, the fluid level in the reservoir
is decreasing at some rate, due to the consumption of the water. Alternatively, when the phase
is wet, the fluid level in the reservoir is increasing. We say that the underlying Markov chain is
what drives the fluid level X (t) at time t . A SFM is hence a two-dimensional Markov process,
{(ϕ(t), X (t)), t ≥ 0}.

SFMs have been highly successful in modeling the behavior of telecommunication networks.
However, it has quickly become evident that SFMs have tremendous application potential
in many other areas, well beyond telecommunications. These areas encompass all areas of
industry, including insurance and manufacturing/management systems, as well as environmental
problems, such as coral modeling and hydro-power management, as examples [7,12,21].

In this paper, we are interested in the following modeling potential. Suppose that, besides
the level X (t) at time t , we would like to model some other continuous performance measure
Y (t), such as the net profit at time t for example. To illustrate this, consider a hydro-power
generator, which can be operated “on design” and “off design”. The latter causes increased
wear, and is less efficient, but can be useful to optimize overall system operation. The generator
must be periodically maintained, in order to improve its performance and prolong its lifespan.
An important related problem is the evaluation of maintenance strategies and the impact of
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