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Abstract

We investigate the behavior of systems of interacting diffusion processes, known as volatility-stabilized
market models in the mathematical finance literature, when the number of diffusions tends to infinity.
We show that, after an appropriate rescaling of the time parameter, the empirical measure of the system
converges to the solution of a degenerate parabolic partial differential equation. A stochastic representation
of the latter in terms of one-dimensional distributions of a time-changed squared Bessel process allows us
to give an explicit description of the limit.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, Fernholz and Karatzas [9] have introduced two kinds of systems of interacting
diffusion processes, the volatility-stabilized market models and the rank-based market models,
in the context of stochastic portfolio theory. Both of them serve as models for the evolution of
capitalizations in equity markets and incorporate the fact that stocks of firms with smaller market
capitalization tend to have higher rates of returns and be more volatile. In a previous paper [25]
the author gave a description of the joint dynamics of the market capitalizations in rank-based
models, when the number of firms tends to infinity (see also [13] for related results). Here, the
corresponding limit is investigated in the context of volatility-stabilized models. For an analysis
of arbitrage opportunities in these models we refer the reader to [8,2].

E-mail addresses: mshkolni@math.stanford.edu, mshkolni@gmail.com.

0304-4149/$ - see front matter c⃝ 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2012.09.001

http://www.elsevier.com/locate/spa
http://dx.doi.org/10.1016/j.spa.2012.09.001
http://www.elsevier.com/locate/spa
mailto:mshkolni@math.stanford.edu
mailto:mshkolni@gmail.com
http://dx.doi.org/10.1016/j.spa.2012.09.001


M. Shkolnikov / Stochastic Processes and their Applications 123 (2013) 212–228 213

The dynamics of the capitalizations in volatility-stabilized models is given by the unique weak
solution to the following system of stochastic differential equations:

d X i (t) =
η

2
S(t)dt +


X i (t)S(t) dWi (t), 1 ≤ i ≤ N , (1)

which is endowed with an initial distribution of the vector (X1(0), . . . , X N (0)) on [0, ∞)N .
Hereby, η is a real number greater than 1, S(t) = X1(t) + · · · + X N (t) and W1, . . . , WN is a
collection of N independent standard Brownian motions. We refer the reader to Section 12 of [9]
for a construction of a weak solution to (1) and an explanation of why it is unique.

We will analyze the limit of the path of empirical measures 1
N

N
i=1 δX i (t) corresponding

to (1), after a suitable rescaling of the time parameter, when N tends to infinity. The slowdown of
the time by a factor of N is needed to observe a non-degenerate limiting behavior. Heuristically,
this can be inferred from the appearance of the process S(t) = X1(t) + · · · + X N (t), an order N
object, in the drift and diffusion coefficients of the processes X1, . . . , X N .

We show that the limit of the sequence of laws of 1
N

N
i=1 δX i (t/N ), N ∈ N, exists and that

the limiting measure is supported on generalized solutions of the degenerate linear parabolic
equation (5) below. Overcoming the problem of degeneracy, we show that the generalized
solution of the Eq. (5) is unique. Having shown uniqueness, we use a stochastic representation
of the solution of (5) to determine the latter explicitly.

Due to our results one may approximate the evolution of the capitalizations in a large
volatility-stabilized market by the solution of the limiting Eq. (5). Moreover, in the context of
stochastic portfolio theory (see e.g. [7,9]) one is interested in the behavior of the rank statistics
of the vector (X1(t), . . . , X N (t)) of capitalizations. Since these are given by the 1

N , 2
N , . . . , N

N -

quantiles of the empirical measure 1
N

N
i=1 δX i (t), our results can also be used to approximate

sample paths of any finite number of ranked capitalizations (or market weights) by the sample
paths of the corresponding quantiles (or appropriate functions of those) of the solution to
the partial differential equation (5). This complements the exact formulas for the transition
probabilities of the market weights in volatility-stabilized markets given in [20], which allow us
to simulate the vector of market weights at finitely many different points in time. In addition, the
stochastic representation mentioned above shows that the solution to Eq. (5) is given by the one-
dimensional distributions of a time-changed squared Bessel process and, thus, establishes a new
connection between volatility-stabilized market models and squared Bessel processes (see [9] for
further connections). The latter were analyzed in much detail in the works [22–24] among others.

Independently from the field of stochastic portfolio theory, systems of interacting diffusion
processes play a major role in statistical physics. In particular, systems of diffusions interacting
through their empirical measure (mean field) have been studied in the literature by many authors;
see e.g. [11,15,4,10,14,16–18]. We remark that the system (1) can be cast into the framework of
[11], since the drift and the diffusion coefficients in the i th equation of the system (1) can be
expressed as functions of the empirical measure of the particle system and the position of the i th
particle. However, the generator of the particle system is not uniformly elliptic on [0, ∞)N and
the same is true on [0, ∞) for the elliptic differential operator on the right-hand side of Eq. (5).
For this reason, the results of [11] do not carry over directly to our setting. Nonetheless, we adapt
some of the techniques developed there to our case.

The time-varying mass partition

αi (t) =
X i (t)

X1(t) + · · · + X N (t)
, 1 ≤ i ≤ N (2)
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