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Abstract

This paper studies particle propagation in a one-dimensional inhomogeneous medium where the laws of
motion are generated by chaotic and deterministic local maps. Assuming that the particle’s initial location
is random and uniformly distributed, this dynamical system can be reduced to a random walk in a one-
dimensional inhomogeneous environment with a forbidden direction. Our main result is a local limit
theorem which explains in detail why, in the long run, the random walk’s probability mass function does
not converge to a Gaussian density, although the corresponding limiting distribution over a coarser diffusive
space scale is Gaussian.
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1. Introduction

1.1. A chaotic dynamical system

This paper studies a particle moving in a continuous inhomogeneous medium which is
composed of a linear chain of cells modeled by the unit intervals [k, k + 1) of the positive
real line. Each interval [k, k + 1) is assigned a label ωk and a map Uωk which determines the
dynamics of the particle as long as the particle remains in the interval. The sequence of labels
ω = (ωk)k∈Z+ , called an environment, is assumed to be either nonrandom, or a realization of a
random sequence that is frozen during the particle’s lifetime.

We are interested in the case in which the local dynamical rules Uωk are chaotic in the
sense that the distance between two initially nearby particles grows at an exponential rate. More
concretely, we shall focus on a model where a particle located at xn ∈ [k, k + 1) at time n jumps
to xn+1 = k + Uωk (xn − k). Here ωk ∈ (0, 1) and Uωk is the piecewise affine map from [0, 1)

onto [0, 2) such that Uωk [0, 1−ωk) = [0, 1) and Uωk [1−ωk, 1) = [1, 2). The dynamical system
generated by the local rules is compactly expressed by xn+1 = Uω(xn), where the global map Uω

on the positive real line is defined by

Uω(x) = [x] +Uω[x](x − [x]), (1.1)

and [x] denotes the integral part of x ; see Fig. 1.
The above model belongs to the realm of extended dynamical systems, a somewhat

vaguely defined yet highly active field of research (e.g. Chazottes and Fernandez [9]). Telltale
characteristics of such systems are a noncompact or high-dimensional phase space and the lack of
relevant finite invariant measures. Our principal motivation is to study the impact of environment
inhomogeneities on the long-term behavior of extended dynamical systems. Concrete models
include neural oscillator networks (Lin, Shea-Brown, and Young [27]) and the Lorentz gas with
randomly placed scatterers (Chernov and Dolgopyat [11]; Cristadoro, Lenci, and Seri [12] to
name a few). In this paper, we shall restrict the analysis to the affine dynamical model in (1.1),
to keep the presentation simple and clear.

1.2. Random initial data

Because the local maps Uωk are chaotic, predicting the particle’s future location with any
useful accuracy over any reasonably long time horizon would require a precise knowledge of its
initial position—a sheer impossibility in practice. Therefore, it is natural to take the statistical
point of view and study the stochastic process defined by

x0
d
= Uniform[0, 1),

xn+1 = Uω(xn).
(1.2)

To analyze the time evolution of the above process, we must impose some regularity
conditions on the environment. In particular, those conditions guarantee ballistic motion, and one
might guess that the distribution approaches Gaussian in the long run. To test this hypothesis, we
have plotted in Fig. 2 numerically computed histograms of xn at time n = 213 in two frozen
environments, using the intervals [k, k + 1) as bins. Rather surprisingly, the histograms do not
appear Gaussian. A similar phenomenon was recently observed by Simula and Stenlund [33,34].
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