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Local time-space calculus for symmetric Lévy processes
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Abstract

We construct a stochastic calculus with respect to the local time process of a symmetric Lévy process X
without Brownian component. The required assumptions on the Lévy process are satisfied by the symmetric
stable processes with index in (1, 2). Based on this construction, the explicit decomposition of F(X t , t)
is obtained for F continuous function admitting a Radon–Nikodym derivative ∂F

∂t and satisfying some
integrability condition. This Itô formula provides, in particular, the precise expression of the martingale and
the continuous additive functional present in Fukushima’s decomposition.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction and main results

For a given semimartingale (X t )t≥0 and any C 2,1-function F on R × R+, the Itô formula
provides both an explicit expansion of (F(X t , t))t≥0 and its stochastic structure. Consider
the case when X is a Lévy process with characteristic triplet (a, σ, ν) which means that for
any t in R+ and ξ in R: E[eiξ X t ] = e−tψ(ξ), where: ψ(ξ) = −iaξ +

σ 2

2 ξ
2

+

R(1 −

eiξ x
+ iξ x1|x |≤1)ν(dx), a ∈ R, σ ∈ R+ and ν is a measure in R such that ν({0}) = 0 and

R
x2

1+x2 ν(dx) < ∞. The function ψ is called the characteristic component of X and ν, the
Lévy measure of X (see Bertoin [2]). Denote by σ B the Brownian component of X , then the Itô
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formula can be rewritten under the following form (see e.g., Ikeda and Watanabe [11]):

F(X t , t) = F(X0, 0)+ Mt + At , (1.1)

where M is a local martingale and A is an adapted process of bounded variation given by

Mt = σ

∫ t

0

∂F

∂x
(Xs−, s)dBs +

∫ t

0

∫
{|y|≤1}

{F(Xs− + y, s)− F(Xs−, s)}µ̃X (dy, ds)

At =

−
0<s≤t

{F(Xs, s)− F(Xs−, s)}1{|∆Xs |>1} +

∫ t

0
A F(Xs, s)ds

where µ̃X (dy, ds) denotes the compensated Poisson measure associated to the jumps of X , and
A is the operator associated to X defined by

AG(x, t) =
∂G

∂t
(x, t)+ a

∂G

∂x
(x, s)+

1
2
σ 2 ∂

2G

∂x2 (x, t)

+

∫
R


G(x + y, t)− G(x, t)− y

∂G

∂x
(x, t)


1(|y|<1)ν(dy) (1.2)

for any function G defined on R × R+, such that ∂G
∂x , ∂G

∂t and ∂2G
∂x2 exist as Radon–Nikodym

derivatives with respect to the Lebesgue measure and the integral is well defined.
Many authors have succeeded in relaxing the conditions on F to write extended versions

of (1.1) (see for example Errami et al. [9], Eisenbaum [6] and Eisenbaum and Kyprianou [7]).
Under the assumption that X has a Brownian component (i.e. σ ≠ 0), we have established in [8]
an extended version of (1.1) that can be considered as optimal in the sense that it requires the
sole condition of existence of locally bounded first order Radon–Nikodym derivatives ∂F

∂x , ∂F
∂t .

Under that condition, this version gives the explicit decomposition of F(X t , t) as the sum of a
Dirichlet process and a bounded variation process.

Here we treat the case σ = 0. If we assume additionally that X is symmetric (i.e. a = 0 and
ν is symmetric), then according to Fukushima [10], we already know that for every continuous
function u in W , the Dirichlet space of X , i.e.

W =


u ∈ L2(R) :

∫
R2
(u(x + y)− u(x))2dxν(dy) < ∞


,

u(X) admits the following decomposition

u(X t ) = u(X0)+ Mu
t + N u

t (1.3)

where Mu is a square-integrable martingale and N u is a continuous additive functional with
0-quadratic energy. Besides, for Φ in C 2(R), Chen et al. [4] give a decomposition of Φ(u(X)) in
terms of Mu and N u .

In this paper we write an extension of (1.3) to time-space functions and give the explicit
expression of the corresponding terms. In particular, the explicit expression of the processes Mu

and N u involved in (1.3) are obtained.
These results, precisely presented below, require two additional assumptions on X . The first

one is the existence of local times for X considered as a Markov process, i.e., a jointly measurable
family {(Lx

t )t≥0, x ∈ R} of positive additive functionals such that for each x , the measure dLx
t

is supported by the set {t ≥ 0 : X t = x} and satisfying for every Borel-measurable function
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