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A chain of interacting particles under strain
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Abstract

We investigate the behaviour of a chain of interacting Brownian particles with one end fixed and the
other end moving away at slow speed ε > 0, in the limit of small noise. The interaction between particles
is through a pairwise potential U with finite range b > 0. We consider both overdamped and underdamped
dynamics.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The behaviour of a Brownian particle moving in a potential well and acted upon by a linearly
increasing force is widely used to model the mechanical failure of molecular bonds arising in
dynamic force spectroscopy experiments [19,9,20,13]. This began with the work of Bell [4] and
was developed further by Evans and Ritchie [10].

Let qs denote the length at time s of a bond that is fixed at one end and has a harmonic spring
attached to the other. If the spring moves linearly at speed ε > 0, the motion of qs is typically
modelled according to an SDE of the form

dqs = (−U ′(qs) + εs) ds + σ dWs,

where U (q) denotes the bond energy (e.g. Lennard-Jones potential), Ws is a standard Brownian
motion and σ > 0 is the (small) noise intensity. Note that this model assumes the motion is
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overdamped. Rupture of the bond corresponds to the first time qs escapes from the stable well
of the effective, time-dependent potential, H(q, εs) = U (q) − εs q. The effect of the external
force is to lower the barrier height of H , thus making escape more likely. The main objective is
to study the distribution of first-breaking times and how the mean first-breaking time scales with
the pulling speed ε. Typically, two pulling speed regimes are considered.

For very slow pulling, the particle is able to escape the well through a large deviation event
before the potential has changed significantly and the energy barrier is still large. In order
to apply the standard theory valid for time-independent potentials [16,11,7,12], the adiabatic
approximation is used: at any given time s, the bond has an instantaneous rate of rupture,
k(s), and the probability of survival until time s, denoted P(s), decays according to Ṗ(s) =

−k(s)P(s). Note that 1/k(s) is given by the usual Eyring–Kramers formula [16,11,7] applied to
H at time s.

As the speed of pulling increases, the energy barrier at the time of rupture becomes smaller. If
pulling is sufficiently fast, the barrier may be close to vanishing completely when rupture occurs.
This means that the external force, given by εs, is almost equal to the maximum slope of U ,
which occurs at the point of inflection between its minimum and maximum, i.e. maximum slope
is U ′(c0), where U ′′(c0) = 0. For times s at which εs is close to this critical force, the effective
potential H is almost cubic near its minimum. This leads to a different rupture rate than that
given above, although still calculated within the Kramers framework.

It is interesting to consider what happens as the pulling speed increases yet further and the
Eyring–Kramers formula is no longer applicable, nor the adiabatic approximation underpinning
the above approach. In this paper, we consider this situation in a model related to that above.
More precisely, we consider a chain of two identical bonds in series with one end fixed and the
other being pulled at a constant rate ε. Both overdamped and underdamped dynamics are treated.
We are interested in which of the two bonds breaks first and how this depends on ε and the
noise intensity σ . As above, the dynamics near the inflection point of the bond energy U play
an important role and will be the focus of our analysis. Roughly, we find that for ε > σ 4/3, the
right-hand bond breaks first, while for ε < σ 4/3, both have an equal probability of breaking in the
limit of small noise. Thus ε = σ 4/3 represents the threshold at which the adiabatic approximation
becomes valid.

To our best knowledge, the first work to tackle rigorously such models of bonds under an
external, time-dependent force was [2]. There the authors consider a similar model of two bonds
in series as above, but with an additional assumption that U is cut-off strictly convex. The
breaking event corresponds to the first time one of the two bonds exceeds the range of U . Roughly
speaking, it is shown that for ε > σ , the chain always breaks on the right-hand side, whereas
for ε < σ , each bond has an equal chance to break in the small noise limit. Thus the threshold
between the different types of behaviour is different from that found in the present work, where
the bond energy U is taken to be smooth (but also with finite range). In principle, the results
of [2] can be extended to arbitrarily many bonds in series [1].

The behaviour of several bonds in series has also been considered by many authors, for both
time-dependent and time-independent external forces. The situation when the external force is
constant, i.e. one initially stretches the chain by some amount and then fixes both endpoints, has
been considered for harmonic potentials [18] and Lennard-Jones potentials [21]. In the harmonic
case, it is shown analytically and numerically that the probability to break at either endpoint
is half that of breaking at any non-extremal point, which all have the same probability. In the
Lennard-Jones case, the motion is not assumed to be overdamped, i.e. the authors consider the
equation
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