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Abstract

We study the path behaviour of general random walks, and that of their local times, on the 2-dimensional
comb lattice C2 that is obtained from Z2 by removing all horizontal edges off the x-axis. We prove strong
approximation results for such random walks and also for their local times. Concentrating mainly on the
latter, we establish strong and weak limit theorems, including Strassen-type laws of the iterated logarithm,
Hirsch-type laws, and weak convergence results in terms of functional convergence in distribution.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction and main results

In this paper we continue our study of a simple random walk C(n) on the 2-dimensional comb
lattice C2 that is obtained from Z2 by removing all horizontal lines off the x-axis (cf. [16]).
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A formal way of describing a simple random walk C(n) on the above 2-dimensional comb
lattice C2 can be formulated via its transition probabilities as follows: for (x, y) ∈ Z2

P(C(n + 1) = (x, y ± 1) | C(n) = (x, y)) =
1
2
, if y ≠ 0, (1.1)

P(C(n + 1) = (x ± 1, 0) | C(n) = (x, 0))

= P(C(n + 1) = (x,±1) | C(n) = (x, 0)) =
1
4
. (1.2)

The coordinates of the just defined vector valued simple random walk C(n) on C2 are denoted
by C1(n),C2(n), i.e., C(n) := (C1(n),C2(n)).

A compact way of describing the just introduced transition probabilities for this simple
random walk C(n) on C2 is via defining

p(u, v) := P(C(n + 1) = v | C(n) = u) =
1

deg(u)
, (1.3)

for locations u and v that are neighbors on C2, where deg(u) is the number of neighbors of u,
otherwise p(u, v) := 0. Consequently, the non-zero transition probabilities are equal to 1/4 if u
is on the horizontal axis and they are equal to 1/2 otherwise.

This and related models have been studied intensively in the literature and have a number
of applications in various problems in physics. See, for example, [1–3,12,23,25,38,43,44], and
the references in these papers. It was observed that the second component C2(n) behaves like
ordinary Brownian motion, but the first component C1(n) exhibits some anomalous subdiffusion
property of order n1/4. Zahran [43] and Zahran et al. [44] applied the Fokker–Planck equation
to describe the properties of the comb-like model. Weiss and Havlin [42] derived the asymptotic
form for the probability that C(n) = (x, y) by appealing to a central limit argument. Bertacchi
and Zucca [8] obtained space–time asymptotic estimates for the n-step transition probabilities
p(n)(u, v) := P(C(n) = v | C(0) = u), n ≥ 0, from u ∈ C2 to v ∈ C2, when u = (2k, 0)
or (0, 2k) and v = (0, 0). Using their estimates, they concluded that, if k/n goes to zero with
a certain speed, then p(2n)((2k, 0), (0, 0))/p(2n)((0, 2k), (0, 0)) → 0, as n → ∞, an indication
that suggests that the particle in this random walk spends most of its time on some tooth of the
comb. Bertacchi [7] noted that a Brownian motion is the right object to approximate C2(·), but
for the first component C1(·) the right object is a Brownian motion time-changed by the local
time of the second component. More precisely, Bertacchi [7] on defining the continuous time
process C(nt) = (C1(nt),C2(nt)) by linear interpolation, established the following remarkable
joint weak convergence result.

Theorem A. For the R2 valued random elements C(nt) of C[0,∞) we have
C1(nt)

n1/4 ,
C2(nt)

n1/2 ; t ≥ 0


Law
−→

(W1(η2(0, t)),W2(t); t ≥ 0), n → ∞, (1.4)

where W1, W2 are two independent Brownian motions and η2(0, t) is the local time process of
W2 at zero, and Law

−→
denotes weak convergence on C([0,∞),R2) endowed with the topology of

uniform convergence on compact subsets.

Here, and throughout as well, C(I,Rd), respectively D(I,Rd), stand for the space of
Rd -valued, d = 1, 2, continuous, respectively càdlàg, functions defined on an interval I ⊆

[0,∞). R1 will be denoted by R throughout.
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