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Abstract

We use integration by parts formulas to give estimates for the L p norm of the Riesz transform. This
is motivated by the representation formula for conditional expectations of functionals on the Wiener space
already given in Malliavin and Thalmaier (2006) [13]. As a consequence, we obtain regularity and estimates
for the density of non-degenerated functionals on the Wiener space. We also give a semi-distance which
characterizes the convergence to the boundary of the set of the strict positivity points for the density.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The starting point of this paper is the representation theorem for densities and conditional
expectations of random variables based on the Riesz transform, recently given by Malliavin and
Thalmaier in [13]. Let us recall it. Let F and G denote random variables taking values on Rd

and R respectively and consider the following integration by parts formula: there exist some
integrable random variables Hi (F,G) such that for every test function f ∈ C∞

c (Rd)

I Pi (F,G) E(∂i f (F)G) = −E( f (F)Hi (F,G)), i = 1, . . . , d.
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Malliavin and Thalmaier proved that if I Pi (F, 1), i = 1, . . . , d hold and the law of F has a
continuous density pF , then

pF (x) = −

d−
i=1

E(∂i Qd(F − x)Hi (F, 1))

where Qd denotes the Poisson kernel on Rd , that is the fundamental solution of the Laplace
operator. Moreover, they proved also that if I Pi (F,G), i = 1, . . . , d, a similar representation
formula holds also for the conditional expectation of G with respect to F . The interest of
Malliavin and Thalmaier in these representations come from numerical reasons – this allows
one to simplify the computation of densities and conditional expectations using a Monte Carlo
method. This is crucial in order to implement numerical algorithms for solving non-linear
PDE’s or optimal stopping problems – for example for pricing American options. But there is a
difficulty: the variance of the estimators produced by such a representation formula is infinite.
Roughly speaking, this comes from the blowing up of the Poisson kernel around zero: ∂i Qd ∈ L p

for p < d/(d − 1), so that ∂i Qd ∉ L2 for every d ≥ 2. So estimates of E(|∂i Qd(F − x)|p) are
crucial in this framework and this is the central point of interest in our paper. In [8,9], Kohasu-
Higa and Yasuda proposed a solution to this problem using some cut off arguments. And in order
to find the optimal cut off level they used the estimates of E(|∂i Qd(F − x)|p) which we prove
in this paper (actually, they used a former version given in the preprint [2]).

So our central result concerns estimates of E(|∂i Qd(F − x)|p). It turns out that, in addition
to the interest in numerical problems, such estimates represent a suitable instrument in order to
obtain regularity of the density of functionals on the Wiener space—for which Malliavin calculus
produces integration by parts formulas. Before going further let us mention that one may also
consider integration by parts formulas of higher order, that is

I Pα(F,G) E(∂α f (F)) = E( f (F)Hα(F,G))

where α = (α1, . . . , αk). We say that an integration by parts formula of order k holds if this
is true for every α ∈ {1, . . . , d}

k . Now, a first question is: which is the order k of integration
by parts that one needs in order to prove that the law of F has a continuous density pF ? If
one employs a Fourier transform argument (see [14]) or the representation of the density by
means of the Dirac function (see [1]) then one needs d integration by parts if F ∈ Rd . In [11]
Malliavin proves that integration by parts of order one is sufficient in order to obtain a continuous
density, the dimension d does not matter (he employs some harmonic analysis arguments). A
second problem concerns estimates of the density pF (and of its derivatives) and such estimates
involve the L p norms of the weights Hα(F, 1). In the approach using the Fourier transform or
the Dirac function, ‖Hα(F, 1)‖p, |α| ≤ d are involved if one estimates ‖pF‖∞. But in [15]
Shigekawa obtains estimates of ‖pF‖∞ depending only on ‖Hi (F, 1)‖p, so on the weights of
order one (and similarly for derivatives). In order to do it, he needs some Sobolev inequalities
that he proves using a representation formula based on the Green function and some estimates
of modified Bessel functions. Our program and our results are similar but the instrument used in
our paper is the Riesz transform and the estimates of the Poisson kernel mentioned above.

Let us be more precise. Notice that I Pi (F,G) may also be written as

I Pi (F,G)
∫
∂i f (x)g(x)µF (dx) = −

∫
f (x)∂µF

i g(x)µF (dx)
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