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Splitting for rare event simulation: A large deviation
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Abstract

Particle splitting methods are considered for the estimation of rare events. The probability of interest
is that a Markov process first enters a set B before another set A, and it is assumed that this probability
satisfies a large deviation scaling. A notion of subsolution is defined for the related calculus of variations
problem, and two main results are proved under mild conditions. The first is that the number of particles
generated by the algorithm grows subexponentially if and only if a certain scalar multiple of the importance
function is a subsolution. The second is that, under the same condition, the variance of the algorithm is
characterized (asymptotically) in terms of the subsolution. The design of asymptotically optimal schemes
is discussed, and numerical examples are presented.
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1. Introduction

Numerical estimation of probabilities of rare events is a difficult problem. There are many
potential applications in operations research and engineering, insurance, finance, chemistry,
biology, and elsewhere, and many papers (and by now even a few books) have proposed
numerical schemes for particular settings and applications. Because the quantity of interest
is very small, standard Monte Carlo simulation requires an enormous number of samples for
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the variance of the resulting estimate to be comparable to the unknown probability. It quickly
becomes unusable, and more efficient alternatives are sought.

The two most widely considered alternatives are those based on change-of-measure
techniques and those based on branching processes. The former is usually called importance
sampling, and the latter is often referred to as multi-level splitting. While good results on a variety
of problem formulations have been reported for both methods, it is also true that both methods
can produce inaccurate and misleading results. The design issue is critical, and one can argue
that proper theoretical tools for the design of importance sampling and splitting algorithms were
simply not available for complicated models and problem formulations. [An alternative approach
based on interacting particles has also been suggested as in [3]. However, we are unaware of any
analysis of the performance of these schemes as the probability of interest becomes small.]

Suppose that the probability of interest takes the form p = P {Z ∈ G} = µ(G), where G is
a subset of some reasonably regular space (e.g., a Polish space S) and µ a probability measure.
In ordinary Monte Carlo one generates a number of independent and identically distributed (iid)
samples {Zi } from µ, and then estimates p using the sample mean of 1{Zi∈G}. In the case of
importance sampling, one uses an alternative sampling distribution ν, generates iid samples

{
Z̄i
}

from ν, and then estimates via the sample mean of [dµ/dν] (Z̄i )1{Z̄i∈G}. The Radon–Nikodim

derivative [dµ/dν] (Z̄i ) guarantees that the estimate is unbiased. The goal is to choose ν so that
individual samples [dµ/dν] (Z̄i )1{Z̄i∈G} cluster tightly around p, thereby reducing the variance.
However, for complicated process models or events G the selection of a good measure ν may not
be simple. The papers [10,11] show how certain standard heuristic methods based on ideas from
large deviations could produce very poor results. The difficulty is due to points in S with low
probability under ν for which dµ/dν is very large. The aforementioned large deviation heuristic
does not properly account for the contribution of these points to the variance of the estimate, and
it is not hard to find examples where the corresponding importance sampling estimator is much
worse than even ordinary Monte Carlo. These estimates exhibit very inaccurate and/or unstable
behavior, though the instability may not be evident from numerical data until massive amounts
have been generated.

The most discussed application of splitting type schemes is to first entrance probabilities, and
to continue the discussion we specialize to that case. Thus Z is the sample path of a stationary
stochastic process {X i } (which for simplicity is taken to be Markovian), and G is the set of
trajectories that first enter a set B prior to entering a set A. More precisely, for disjoint B and A
and x 6∈ A ∪ B,

p = p(x) = P
{

X j ∈ B, X i 6∈ A, i ∈ {0, . . . , j}, j <∞|X0 = x
}
.

In the most simple version of splitting, the state space is partitioned according to certain sets
B ⊂ C0 ⊂ C1 ⊂ · · · ⊂ CK , with x 6∈ CK and A ∩ CK = ∅. These sets are often defined as
level sets of a particular function V , which is commonly called an importance function. Particles
are generated and killed off according to the following rules. A single particle is started at x .
Generation of particles (splitting) occurs whenever an existing particle reaches a threshold or
level Ci for the first time. At that time, a (possibly random) number of new particles are placed at
the location of entrance into Ci . Future evolutions of these particles are independent of each other
(and all other particles), and follow the law of {X i }. Particles are killed if they enter A before B.
Attached to each particle is a weight. Whenever a particle splits, the weight of each descendent
equals that of the parent times a discount factor. A random tree is thereby produced, with each leaf
corresponding to a particle that has either reached B or been killed. A random variable (roughly
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