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Abstract

We solve the infinite-dimensional stochastic differential equations (ISDEs) describing an infinite number
of Brownian particles in R+ interacting through the two-dimensional Coulomb potential. The equilibrium
states of the associated unlabeled stochastic dynamics are Bessel random point fields. To solve these ISDEs,
we calculate the logarithmic derivatives, and prove that the random point fields are quasi-Gibbsian.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The Bessel random point fields µα (−1 < α < ∞) are probability measures on the configu-
ration space S over S = [0, ∞), whose n-point correlation functions ρn

α (see (2.2)) with respect
to the Lebesgue measure are given by

ρn
α(x1, . . . , xn) = det[Kα(xi , x j )]1≤i, j≤n . (1.1)
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Here, Kα(x, y) is a continuous function called the Bessel kernel defined with the Bessel function
Jα of order α such that for x ≠ y
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(1.2)

and that for x = y
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1
4
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Note that 0 ≤ Kα ≤ Id as an operator on L2(S, dx). By definition µα are determinantal random
point fields with Bessel kernels Kα (see [26]).

It is known that these random point fields arise as a scaling limit at the hard left edge of the
distributions µn

α of the spectrum of the Laguerre ensemble. The random point fields µα represent
the thermodynamic limit of the n-particle systems µn

α , whose labeled densities σ n
α (x)dx are given

by
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Very loosely, by taking n to infinity, we obtain the following informal expression for the µα:

µα(dx) =
1
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dxm . (1.5)

Hence we regard the µα as random point fields with free potentials Φα(x) = −α log x and
interaction potential Ψ(x) = −2 log |x |. Unlike Ruelle’s class of interaction potentials, one
cannot justify this using the Dobrushin–Lanford–Ruelle (DLR) equations. Instead, we will
proceed in terms of logarithmic derivatives in Theorem 2.3.

We next turn to the stochastic dynamics associated with the µn
α . To prevent the particles from

hitting the origin, we suppose that 1 ≤ α (Lemma B.1). Then, from Eq. (1.4), it can be seen that
the natural n-particle stochastic dynamics Xn

= (Xn,1
t , . . . , Xn,n

t ) are given by the stochastic
differential equations (SDEs)
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t +


−

1
8n

+
α

2Xn,i
t

+
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j≠i

1

Xn,i
t − Xn, j

t


dt (1 ≤ i ≤ n). (1.6)

Hence, taking n to infinity, we come to the ISDEs

d X i
t = d Bi

t +


α

2X i
t

+

∞
j≠i

1

X i
t − X j

t


dt (i ∈ N). (1.7)

The purpose of this paper is to solve these ISDEs in such a way that the equilibrium states of the
associated unlabeled dynamics Xt =


∞

i=1 δX i
t

are Bessel random point fields µα .
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