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Abstract

Upper bounds for the probabilities P(F ≥ EF + r) and P(F ≤ EF − r) are proved, where F is a
certain component count associated with a random geometric graph built over a Poisson point process on
Rd . The bounds for the upper tail decay exponentially, and the lower tail estimates even have a Gaussian
decay.

For the proof of the concentration inequalities, recently developed methods based on logarithmic
Sobolev inequalities are used and enhanced. A particular advantage of this approach is that the resulting
inequalities even apply in settings where the underlying Poisson process has infinite intensity measure.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Random geometric graphs have been studied extensively for some decades now. In the sim-
plest version of these graphs, the vertices are given by a random set of points in Rd and two
vertices are connected by an edge if their distance is less than a fixed positive real number.
This model was introduced by E. N. Gilbert in [14], and since then many authors contributed
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to various directions of research on random geometric graphs. For a historical overview on
the topic we refer the reader to the book [25] by M. D. Penrose. Recent contributions are e.g.
[11,20,21,26].

It is a well established fact that numerous real world phenomena can be modeled by means of a
random geometric graph, like for example the spread of a disease or a fire (see e.g. [4,13]). Also,
as communication networks such as wireless and sensor networks have become increasingly
important in recent years, random geometric graphs have gained a considerable attention —
since they provide natural models for these objects (see e.g. [10,15,24]).

Further applications arise from cluster analysis, where one aims to divide a given set of objects
into groups (or clusters) such that objects within the same group are similar to each other (see
e.g. [6,7] for further reading). If the objects are represented by points in Rd , one way to perform
this task is to built a geometric graph over the points and to take the connected components of the
graph as the clusters. At this, a connected component of a graph G with vertex set V is an induced
connected subgraph H of G with vertex set V ′

⊆ V such that for any x ∈ V ′ and y ∈ V \ V ′

there is no edge between x and y. For the purpose of statistical inference, a probabilistic theory
for the connected components of the graph is needed.

Throughout the present work, the vertices of the considered random geometric graphs are
given by a Poisson point process onRd . The class of random variables that is investigated in this
paper includes a variety of quantities that are typically of interest in several of the applications
described above. For example, one can consider the number of connected components of the
graph with at most k (or alternatively with exactly k) vertices. Further random variables that are
covered by our analysis are obtained by counting the number of components that are isomorphic
to a fixed connected graph H . Early work on the latter quantities was done by R. Hafner in [16]
and further related results are presented in [25].

The main contribution of the present paper is to establish new exponential upper bounds for
the probabilities P(F ≥ EF + r) and P(F ≤ EF − r), where EF denotes the expectation
of a component count F and r > 0 is a real number. Inequalities of this type are usually
called concentration inequalities. In order to derive our estimates, we use and enhance a method
that was recently developed by S. Bachmann and G. Peccati in [2]. The latter paper provides
several refinements of a method for proving tail estimates for Poisson functionals (also known
as the entropy-method), which is based on (modified) logarithmic Sobolev inequalities, and
which was particularly studied in the seminal work by Wu [28], extending previous findings
by Ané, Bobkov and Ledoux [1,5]. Combining Wu’s modified logarithmic Sobolev inequality
with the famous Mecke formula for Poisson processes, the authors of [2] were able to adapt
concentration techniques for product space functionals, which were particularly developed by
Boucheron, Lugosi and Massart [8], and also by Maurer [22], to the setting of Poisson processes.
This approach adds a lot of flexibility to the entropy-method, and a remarkable feature of the
obtained techniques is that they allow to deal with functionals build over Poisson processes with
infinite intensity measure.

First applications for these techniques are worked out in [2] and also in [3], where concen-
tration bounds for certain Poisson U-statistics with positive kernels are established. A crucial
property that was exploited in the latter investigations is that adding a point to the Poisson pro-
cess cannot decrease the value of the considered functionals. In principle, this monotonicity is
not needed for the method suggested in [2] to be applied. However, due to somewhat more com-
plicated objects that need to be controlled when dealing with non-monotonic functionals, the
method has only been successfully used for monotonic quantities so far. Clearly, the component
counts that are studied in the present paper are not monotonic. So, a particularly interesting aspect
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