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Abstract

In this article, it is proved that for any probability law µ over R and a drift field b : R → R and killing
field k : R → R+ which satisfy hypotheses stated in the article and a given terminal time t > 0, there
exists a string m, an α ∈ (0, 1], an initial condition x0 ∈ R and a process X with infinitesimal generator

1
2

∂2

∂m∂x + b ∂
∂m −

∂K
∂m


where k =

∂K
∂x such that for any Borel set B ∈ B(R),

P (X t ∈ B|X0 = x0) = αµ(B).

Firstly, it is shown the problem with drift and without killing can be accommodated, after a simple co-
ordinate change, entirely by the proof in Noble (2013). The killing field presents additional problems and
the proofs follow the lines of Noble (2013) with additional arguments.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Results and method of proof

Let µ be a probability measure over R, b : R → R and k : R → R+ given drift and killing
functions. Set
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b(x) =


b(x) x ∈ suppt(µ)

0 x ∉ suppt(µ),
B(x) =




[0,x]

b(y)dy x ≥ 0

−


[x,0)

b(y)dy x < 0
(1)

where suppt(µ) denotes the support of the measure µ. Let

k(x) =


k(x) x ∈ suppt(µ)

0 x ∉ suppt(µ),
K (x) =




[0,x]

k(y)dy x ≥ 0

−


[x,0)

k(y)dy x < 0.

(2)

Hypothesis 1.1 (Hypothesis on Drift b, Killing Field k and Measure µ). The target probability
measure, drift and killing (µ, b, k) satisfy the following conditions.

1. B from (1) and K from (2) are absolutely continuous with respect to µ.
2. Let l−(x) = sup{y ∈ suppt(µ) ∩ (−∞, x)} and let l+(x) = inf{y ∈ suppt(µ) ∩ (x, +∞)},

then

sup
x∈R

lim
h↓0

 l+(x)+h

l−(x)−h
|b(x)|dx < 1 (3)

whereb is from (1).
3. Let c : (0, 1) → R+ denote the function defined by:

c(x) =


ln 1

x


− (1 − x)

(1 − x)2 . (4)

Let γ satisfy:

γ =
1
2


1 − sup

x∈R
lim
h↓0

 l+(x)+h

l−(x)−h
|b(x)|dx


. (5)

Then (b, µ) satisfies:
∞

−∞

 0∨x

0∧x
eF(b,y)dy


µ(dx) < +∞ (6)

where

F(b, y) = 2

 0∨y

0∧y

b(x)
 dx + c(γ )

× sup
t :(0∧y)=t0<···<tn=(0∨y)

n−1
i=0

 ti+1

ti
|b(x)|dx

2


(7)

andb is defined by (1). Here the maximum is taken over sequences of length n for all n ∈ N.
4. limx→±+∞

∂K
∂µ

(x) = 0.

Let z+ = sup{x ∈ suppt(µ)} and z− = inf{x ∈ suppt(µ)}. Then ∂K
∂µ

(x) is defined to be 0 for
x > z+ and x < z−.
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