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Abstract

In this paper, we study a kind of system of second order quasilinear parabolic partial differential equation
combined with algebra equations. Introducing a family of coupled forward–backward stochastic differential
equations, and by virtue of some delicate analysis techniques, we give a probabilistic interpretation for it in
the viscosity sense.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we are interested in the problem to provide a probabilistic interpretation of
the solutions of the following system of quasilinear parabolic partial differential equation (PDE
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hereafter) combined with algebra equations:∂t u(t, x)+ (Lu)(t, x, u(t, x), v(t, x))+ g(t, x, u(t, x), v(t, x)) = 0,
v(t, x) = ∇u(t, x)σ (t, x, u(t, x), v(t, x)),
u(T, x) = Φ(x), (t, x) ∈ [0, T ] × Rn,

(1)

where L is an infinitesimal operator defined by

(Lφ)(t, x, y, z) :=
1
2

n
i, j=1

(σσ⊤)i j (t, x, y, z)
∂2φ

∂xi∂x j
(t, x)+

n
i=1

bi (t, x, y, z)
∂φ

∂xi
(t, x).

From the probabilistic viewpoint, the above PDE system should be related to a family of
coupled forward–backward stochastic differential equations (FBSDEs) parameterized by (t, x) ∈

[0, T ] × Rn as follows:
d X t,x

s = b(s, X t,x
s , Y t,x

s , Z t,x
s )ds + σ(s, X t,x

s , Y t,x
s , Z t,x

s )dWs,

−dY t,x
s = g(s, X t,x

s , Y t,x
s , Z t,x

s )ds − Z t,x
s dWs,

X t,x
t = x, Y t,x

T = Φ(X t,x
T ), s ∈ [t, T ].

(2)

How to coincide the solution of the PDE system (1) with that of the FBSDE systems (2) is an
open problem posed by Peng [22] in 1999.

Coupled FBSDE in the form of (2) was first studied by Antonelli [1]. In his work, a local
existence and uniqueness result was obtained. For the global existence and uniqueness results,
there exist two main methods. One concerns a kind of four-step scheme approach introduced
by Ma, Protter and Yong [13] which can be regarded as a sort of combination of the methods
of PDE and probability theory. In this method, the diffusion coefficient σ of the forward
equation is required to be non-degenerate and the coefficients are not allowed to be random.
The second method is probabilistic. Under some monotonicity assumptions, Hu and Peng [10]
obtained an existence and uniqueness result when the forward and backward equations have
same dimensions. Peng and Wu [23] extended the result of [10] to the FBSDEs with forward
and backward components of different dimensions and weakened the monotonicity assumptions.
Yong [28,29] called the method used in [10,23] method of continuation. He introduced the
notions of bridge and Lyapunov operator to make the method more systematic. Recently, Ma,
Wu, Zhang and Zhang [14] proposed a unified approach, which can be regarded as a combination
of existing methods.

It is classical that a system of first order semilinear PDEs can be solved via the method of
characteristic curves (see Courant and Hilbert [6]). The well known Feynman–Kac formula gives
a probabilistic interpretation for linear second order PDEs of elliptic or parabolic type, and has
been generalized to the case of semilinear second order PDEs by Peng [19–21], Pardoux and
Peng [16], Barles, Buckdahn and Pardoux [3], Pardoux, Pradeilles and Rao [17], Pardoux [15],
Kobylanski [11], Buckdahn and Li [5], Wu and Yu [27], Buckdahn, Huang and Li [4] and so
on, with the help of the theory of backward stochastic differential equations (BSDEs). In 1999,
Pardoux and Tang [18] connected a special kind of coupled FBSDEs with quasilinear parabolic
PDEs, and gave an existence result of the viscosity solution (see Crandall, Ishii and Lions [7])
under some monotonicity conditions which are different from [10,23]. However, in their paper
the diffusion coefficient σ of the forward equation is independent of the representation term
involved in the martingale part of the backward equation. (The representation term is denoted by
the generic letter Z , as usual in the BSDEs theory.)
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