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Abstract

We solve two stochastic control problems in which a player tries to minimize or maximize the exit time
from an interval of a Brownian particle, by controlling its drift. The player can change from one drift to
another but is subject to a switching cost. In each problem, the value function is written as the solution
of a free boundary problem involving second order ordinary differential equations, in which the unknown
boundaries are found by applying the principle of smooth fit. For both problems, we compute the value
function, we exhibit the optimal strategy and we prove its generic uniqueness.
c⃝ 2014 Elsevier B.V. All rights reserved.

MSC: primary 93E20; secondary 60G40; 60J65

Keywords: Stochastic control with switching cost; Principle of smooth fit; Free boundary problems; Martingale method

1. Description of the problem

Consider a game in which the player’s goal is to force a Brownian particle out of an interval
(say [0, 1]) as quickly as possible. At each instant, the player selects one of two opposite constant
forces, either upwards or downwards, which adds or subtracts a constant drift µ to the Brownian
motion. The player is allowed to switch between the two forces at any time, but at each switch,
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he incurs a penalty of c units of time (c > 0). The goal is to find a strategy that minimizes the
expected penalized time, that is, the sum of the time needed for the particle to exit the interval
and the switching penalties (“optimal expulsion problem”).

We also solve the “opposite” problem, in which the goal is to keep the particle inside the
interval for as long as possible, subject to the same kind of switching penalty, which is now
subtracted from the time to exit the interval (“optimal confinement problem”).

These two abstract problems can be viewed in the context of various applications, such as
maintaining an inventory between certain bounds by controlling the production rate [9,22], or
maintaining an insurance company’s capital reserve between two bounds by controlling the in-
surance premium [2]. In certain asymptotic limits, these quantities may behave like a Brownian
motion, and a change of production rate or of premium may entail a switching cost. The two
boundaries may represent certain levels that one may want to reach as soon (or as late) as
possible.

The presence of the switching cost is the key issue here: for instance, Prokhorov [21] solves a
similar problem but without cost penalty, and Mandl [15] treats a control problem for a Brownian
motion under a constraint on the number of switchings. When there is no switching cost, then
the solutions of these problems are well-known (see [10, p.167–168]).

There is a well-developed literature for studying this kind of stochastic control problem,
including [8,10,12,16,26]. Most frequently, these problems involve terminal costs and running
costs. More recently, even more general kinds of performance criteria have been considered, as
in [17], where the criterion also involves the running maximum of the observed process. In the
presence of a switching cost, the problem falls into the theory of impulse control, as described
for instance in [16, Chapter 6].

In order to solve our two control problems, we begin by formulating a free boundary problem
for the value function. This involves splitting the state space into two regions, a continuation
region and a switching region. The particular form of the regions is guessed from the description
of the problem. In the continuation region, the value function solves certain ordinary differential
equations, and in the complement of this region, the value function satisfies a relationship related
to the switching cost. There are also boundary conditions at the extremities of the interval. In
general, this system of equations is not sufficient to characterize the value function, and this
is indeed the case here: it is necessary to specify appropriate additional conditions at the free
boundaries between the regions, which we do using the so-called principle of smooth fit (see for
example [19, p.147] and [20, Section 5.3.4]).

This approach has a long history, going back to [4,11,23,24], and, more recently, [19], and
has proved to be quite successful in a wide range of problems, including, in addition to those
in the references just mentioned, the problem of optimal switching (without cost) between two
Brownian motions [14]. Other examples of optimal switching problems related to ours and with
explicit solutions can be found in [1,6,13]. The problems considered in these papers differ from
ours in particular because the state space is either the real line or the half-line, and there are no
boundary conditions.

In our problem, if the switching cost is high enough, then, obviously, one should switch drifts
rarely or not at all, and in fact, it turns out that there is a critical value c∗(µ), which turns out to
be the same in both the expulsion and confinement problems, above which it is optimal never to
switch drifts. We compute this value explicitly, and then we show that for costs c < c∗(µ), the
optimal strategy is determined by four thresholds that are the endpoints of the switching regions.
We determine these thresholds explicitly, up to the resolution of a single transcendental equation
(in each problem).
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