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Abstract

Tempered fractional Brownian motion is obtained when the power law kernel in the moving average
representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper
develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we
develop some basic results on tempered fractional calculus.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

This paper develops the theory of stochastic integration for tempered fractional Brownian
motion (TFBM). Our approach follows the seminal work of Pipiras and Taqqu [34] for fractional
Brownian motion (FBM). An FBM is the fractional derivative (or integral) of a Brownian motion,
in a sense made precise by [34]. A fractional derivative is a (distributional) convolution with a
power law [29,32,37]. Recently, some authors have proposed a tempered fractional derivative
[2,6] that multiplies the power law kernel by an exponential tempering factor. Tempering
produces a more tractable mathematical object, and can be made arbitrarily light, so that the
resulting operator approximates the fractional derivative to any desired degree of accuracy over
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a finite interval. Based on this work, the authors of this paper have recently proposed a tempered
fractional Brownian motion (TFBM), see [28] for basic definitions and properties.

Kolmogorov [22] first defined FBM using the harmonizable representation, as a model for
turbulence in the inertial range (moderate frequencies). Mandelbrot and Van Ness [26] later
developed the moving average representation of FBM. Since then, FBM has found many diverse
applications in almost every field of science and engineering [1,12,35]. Davenport [10] modified
the power spectrum of FBM to obtain a model for wind speed, which is now widely used
[24,31,33]. The authors showed in [28] that TFBM has the Davenport spectrum, and hence
TFBM offers a useful extension of the Kolmogorov model for turbulence, to include low
frequencies.

The structure of the paper is as follows. In Section 2 we prove some basic results on tempered
fractional calculus, which will be needed in the sequel. In Section 3 we apply the methods
of Section 2 to construct a suitable theory of stochastic integration for tempered fractional
Brownian motion. Finally, in Section 4 we discuss model extensions, related results, and some
open questions.

2. Tempered fractional calculus

In this section, we define tempered fractional integrals and derivatives, and establish their
essential properties. These results will form the foundation of the stochastic integration theory
developed in Section 3. We begin with the definition of a tempered fractional integral.

Definition 2.1. For any f ∈ L p(R) (where 1 ≤ p < ∞), the positive and negative tempered
fractional integrals are defined by

Iα,λ
+ f (t) =

1
Γ (α)


+∞

−∞

f (u)(t − u)α−1
+ e−λ(t−u)+du (2.1)

and

Iα,λ
− f (t) =

1
Γ (α)


∞

−∞

f (u)(u − t)α−1
+ e−λ(u−t)+du (2.2)

respectively, for any α > 0 and λ > 0, where Γ (α) =


+∞

0 e−x xα−1dx is the Euler gamma
function, and (x)+ = x I (x > 0).

When λ = 0 these definitions reduce to the (positive and negative) Riemann–Liouville frac-
tional integral [29,32,37], which extends the usual operation of iterated integration to a fractional
order. When λ = 1, the operator (2.1) is called the Bessel fractional integral [37, Section 18.4].

Lemma 2.2. For any α > 0, λ > 0, and p ≥ 1, Iα,λ
± is a bounded linear operator on L p(R)

such that

∥Iα,λ
± f ∥p ≤ λ−α

∥ f ∥p (2.3)

for all f ∈ L p(R).

Proof. Young’s Theorem [37, p. 12] states that if φ ∈ L1(R) and f ∈ L p(R) then φ∗ f ∈ L p(R)

and the inequality

∥φ ∗ f ∥p ≤ ∥φ∥1∥ f ∥p (2.4)
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