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Abstract

In this paper, we prove that there exists a unique weak (Sobolev) solution to the mixed boundary value
problem for a general class of semilinear second order elliptic partial differential equations with singular co-
efficients. Our approach is probabilistic. The theory of Dirichlet forms and backward stochastic differential
equations with singular coefficients and infinite horizon plays a crucial role.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, our aim is to use probabilistic methods to solve the mixed boundary value
problem for semilinear second order elliptic partial differential equations (called PDEs) of the
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following form:Lu(x) = −F(x, u(x),∇u(x)) on D
1
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∂γ
(x)− ⟨B, n⟩(x)u(x) = Φ(x) on ∂D.

(1.1)

The elliptic operator L is given by:
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− div(B̂·)+ Q(x) (1.2)

on a d-dimensional smooth bounded Euclidean domain D.
A(x) = (ai j (x))1≤i, j≤d : Rd

→ Rd
⊗ Rd is a smooth, symmetric matrix-valued function

which is uniformly elliptic. That is, there is a constant λ > 1 such that

1
λ

Id×d ≤ A(·) ≤ λId×d . (1.3)

Here B = (B1, . . . , Bd) and B̂ = (B̂1, . . . , B̂d) : Rd
→ Rd are Borel measurable functions,

which could be singular, and Q is a real-valued Borel measurable function defined on Rd such
that,

ID(|B| + |B̂|) ∈ L p(D), ID|Q| ∈ L p1(D)

for some p > d, p1 >
d
2 .

L is rigorously determined by the following quadratic form:

Q(u, v) := (−Lu, v)L2(D) =
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Q(x)u(x)v(x)dx .

Details about the operator L can be found in [9,16,21].
The function F(·, ·, ·) in (1.1) is a nonlinear function defined on Rd

× R × Rd and Φ(x) is
a bounded measurable function defined on the boundary ∂D and γ = An, where n denotes the
inward normal vector field defined on the boundary ∂D.

To solve the problem (1.1), it turns out that we need to establish the existence and uniqueness
of solutions to backward stochastic differential equations (BSDEs) with singular coefficients and
infinite horizon, which is of independent interest.

Probabilistic approaches to the boundary value problem of second order differential operators
have been adopted by many authors and the earliest work went back as early as 1944 in [12].
There has been a lot of study on the Dirichlet boundary problems (see [1,8,4,6,10,23]). However,
there are not many articles on the probabilistic approaches to the Neumann boundary problem.

When A = I, B = 0 and B̂ = 0, the following Neumann boundary problem
1
2
△u(x)+ qu(x) = 0 on D

1
2
∂u

∂n
(x) = φ(x) on ∂D
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