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Abstract

We consider perpetuities of the form

D = B1 exp (Y1)+ B2 exp (Y1 + Y2)+ · · · ,

where the Y j ’s and B j ’s might be i.i.d. or jointly driven by a suitable Markov chain. We assume that the Y j ’s
satisfy the so-called Cramér condition with associated root θ∗ ∈ (0,∞) and that the tails of the B j ’s are
appropriately behaved so that D is regularly varying with index θ∗. We illustrate by means of an example
that the natural state-independent importance sampling estimator obtained by exponentially tilting the Y j ’s
according to θ∗ fails to provide an efficient estimator (in the sense of appropriately controlling the relative
mean squared error as the tail probability of interest gets smaller). Then, we construct estimators based on
state-dependent importance sampling that are rigorously shown to be efficient.
c⃝ 2012 Published by Elsevier B.V.
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1. Introduction

We consider the problem of developing efficient rare-event simulation methodology for
computing the tail of a perpetuity (also known as infinite horizon discounted reward). Perpetuities
arise in the context of ruin problems with investments and in the study of financial time series
such as ARCH-type processes (see for example, [19,26]).

In the sequel we let X = (Xn : n ≥ 0) be an irreducible finite state-space Markov chain (see
Section 2 for precise definitions). In addition, let ((ξn, ηn) : n ≥ 1) be a sequence of i.i.d.
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(independent and identically distributed) two dimensional r.v.’s (random variables) independent
of the process X . Given X0 = x0 and D0 = d0 the associated (suitably scaled by a parameter
∆ > 0) discounted reward at time n takes the form

Dn (∆) = d0 + λ (X1, η1)∆ exp (S1)+ λ (X2, η2)∆ exp (S2)+ · · ·

+ λ (Xn, ηn)∆ exp (Sn)

where the accumulated rate process (Sk : k ≥ 0) satisfies

Sk+1 = Sk + γ (Xk+1, ξk+1) ,

given an initial value S0 = s0. In order to make the notation compact, throughout the rest of the
paper we shall often omit the explicit dependence of ∆ in Dn (∆) and we will simply write Dn .
We stress that ∆ > 0 has been introduced as a scaling parameter which eventually will be sent
to zero. Introducing ∆, as we shall see, will be helpful in the development of the state-dependent
importance sampling algorithm that we study here.

The functions (γ (x, z) : x ∈ S, z ∈ R) and (λ (x, z) : x ∈ S, z ∈ R) are deterministic and
represent the discount and reward rates respectively. For simplicity we shall assume that λ (·) is
non-negative. Define

φ(s0,d0,x0) (∆) , P (D∞ > 1|S0 = s0, D0 = d0, X0 = x0)

= P (T∆ <∞|S0 = s0, D0 = d0, X0 = x0) , (1)

where T∆ = inf{n ≥ 0 : Dn (∆) > 1}.
Throughout this paper the distributions of λ(x, η1) and γ (x, ξ1) are assumed to be known

both analytically and via simulation, as well as the transition probability of the Markov chain
X i . Our main focus on this paper is on the efficient estimation via Monte Carlo simulation
of φ (∆) , φ(0,0,x0) (∆) as ∆ ↘ 0 under the so-called Cramér condition (to be reviewed in
Section 2) which in particular implies (see Theorem 1 below)

φ (∆) = c∗∆θ∗(1+ o (1)) (2)

for a given pair of constants c∗, θ∗ ∈ (0,∞). Note that

φ (∆) = P


∞

k=1

exp (Sk) λ (Xk, ηk) >
1
∆


,

so ∆ corresponds to the inverse of the tail parameter of interest.
Although our results will be obtained for s0 = 0 = d0, it is convenient to introduce the slightly

more general notation in (1) to deal with the analysis of the state-dependent algorithms that we
will introduce.

Approximation (2) is consistent with well known results in the literature (e.g. [22]) and it im-
plies a polynomial rate of decay to zero, in 1/∆, for the tail of the distribution of the perpetuity
∞

k=1 exp (Sk) λ (Xk, ηk). The construction of our efficient Monte Carlo procedures is based on
importance sampling, which is a variance reduction technique popular in rare-event simulation
(see, for instance, [4]). It is important to emphasize that, since our algorithms are based on im-
portance sampling, they allow to efficiently estimate conditional expectations of functions of the
sample path of {Dn} given that T∆ <∞. The computational complexity analysis of the estima-
tion of such conditional expectations is relatively straightforward given the analysis of an impor-
tance sampling algorithm based on φ (∆) (see for instance the discussion in [1]). Therefore, as
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