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Hydrodynamic limit for the velocity-flip model
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Abstract

We study the diffusive scaling limit for a chain of N coupled oscillators. In order to provide the system
with good ergodic properties, we perturb the Hamiltonian dynamics with random flips of velocities, so that
the energy is locally conserved. We derive the hydrodynamic equations by estimating the relative entropy
with respect to the local equilibrium state, modified by a correction term.
c⃝ 2013 Elsevier B.V. All rights reserved.
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0. Introduction

This paper aims at proving the hydrodynamic limit for a Hamiltonian system of N coupled
oscillators. The ergodic properties of Hamiltonian dynamics are poorly understood, especially
when the size of the system goes to infinity. That is why we perturb it by an additional
conservative mixing noise, as it has been proposed for the first time by Olla, Varadhan and
Yau [16] in the context of gas dynamics, and then in [11] in the context of Hamiltonian lattice
dynamics (see e.g. [1,2,7,3,4,6,10,15] for more recent related works).

We are interested in the macroscopic behavior of this system as N goes to infinity, after
rescaling space and time with the diffusive scaling. The system is considered under periodic
boundary conditions—more precisely we work on the one-dimensional discrete torus TN :=

{0, . . . , N−1}. The configuration space is denoted by ΩN := (R × R)TN . A typical configuration
is given by ω = (px , rx )x∈TN where px stands for the velocity of the oscillator at site x , and rx
represents the distance between oscillator x and oscillator x + 1. The deterministic dynamics is
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described by the harmonic Hamiltonian
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The stochastic perturbation is added only to the velocities, in such a way that the energy
of particles is still conserved. Nevertheless, the momentum conservation is no longer valid.
The added noise can be easily described: each particle independently waits an exponentially
distributed time interval and then flips the sign of velocity. The strength of the noise is regulated
by the parameter γ > 0. The total deformation


rx and the total energy


(p2

x + r2
x )/2 are

the only two conserved quantities. Thus, the Gibbs states are parametrized by two potentials,
temperature and tension: for β > 0 and λ ∈ R, the equilibrium Gibbs measures µN

β,λ on the

configuration space Ω N
:= (R × R)TN are given by the product measures

dµN
β,λ =


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Z(β, λ)
drx dpx , (0.2)

where ex := (p2
x + r2

x )/2 is the energy of the particle at site x , and Z(β, λ) is the normalization
constant. The temperature is equal to β−1 and the tension is given by λ/β.

The goal is to prove that the two empirical profiles associated to the conserved quantities
converge in the thermodynamic limit N → ∞ to the macroscopic profiles r(t, ·) and e(t, ·) which
satisfy an autonomous system of coupled parabolic equations. Let r0 : T → R and e0 : T → R
be respectively the initial macroscopic deformation profile and the initial macroscopic energy
profile defined on the one-dimensional torus T = [0, 1]. We want to show that the functions
r(t, q) and e(t, q) defined on R+ × T are solutions of
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q ∈ T, t ∈ R, (0.3)

with the initial conditions r(0, ·) = r0(·) and e(0, ·) = e0(·).
We approach this problem by using the relative entropy method, introduced for the first time

by H. T. Yau [19] for a gradient1 diffusive Ginzburg–Landau dynamics. For non-gradient models,
Varadhan [18] has proposed an effective approach. Funaki et al. followed his ideas in [12] to
extend the relative entropy method to some non-gradient processes and introduced the concept
of local equilibrium state of second order approximation.

The usual relative entropy method works with two time-dependent probability measures. Let
us denote by µN

0 the Gibbs local equilibrium associated to a deformation profile r0 and an energy
profile e0 (see (1.8) for the explicit formula). As we work in the diffusive scaling, we look at the
state of the process at time t N 2. We denote it by µN

t and we suppose that it starts from µN
0 . Let

µN
e(t,·),r(t,·) be the Gibbs local equilibrium associated to the profiles r(t, ·) and e(t, ·) which satisfy

(0.3).2 If we denote by f N
t and φN

t , respectively, the densities3 of µN
t and µN

e(t,·),r(t,·) with respect

1 A conservative system is called gradient if the currents corresponding to the conserved quantities are gradients.
2 For the sake of readability, in the following sections we will denote it by µN

βt (·),λt (·)
, where βt (·) and λt (·) are the

two potential profiles associated to r(t, ·) and e(t, ·) (see (1.5) and (1.8)).
3 The existence of these two densities is justified in Section 2.1.
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