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Abstract

We use a non-Markovian coupling and small modifications of techniques from the theory of finite
Markov chains to analyze some Markov chains on continuous state spaces. The first is a generalization
of a sampler introduced by Randall and Winkler, and the second a Gibbs sampler on narrow contingency
tables.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of sampling from a given distribution on high-dimensional continuous spaces
arises in the computational sciences and Bayesian statistics, and a frequently-used solution is
Markov chain Monte Carlo (MCMC); see [14] for many examples. Because MCMC methods
produce good samples only after a lengthy mixing period, a long-standing mathematical question
is to analyze the mixing times of the MCMC algorithms which are in common use. Although
there are many mixing conditions, the most commonly used is called the mixing time, and is
based on the total variation distance.

For measures v, u with common measurable o-algebra A, the fotal variation distance
between p and v is

lw —vliry = sup (u(A) —v(A)).
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For an ergodic discrete-time Markov chain X; with unique stationary distribution 7, the
mixing time is

t(e) = inf{r : |[L(X;) — w7y <€}

Although most scientific and statistical uses of MCMC methods occur in continuous state spaces,
much of the mathematical mixing analysis has been in the discrete setting. The methods that have
been developed for discrete chains often break down when used to analyze continuous chains,
though there are some efforts, such as [26,22,16], to create general techniques. This paper extends
the author’s previous work in [25] and work of Randall and Winkler [20], and attempts to provide
some more examples of relatively sharp analyses of continuous chains similar to those used to
develop the discrete theory.

The first process that we analyze is a Gibbs sampler on the simplex with a very restricted set
of allowed moves. Fix a finite group G of size n with symmetric generating set R of size m,
with id ¢ R. For unity of notation, label the group elements with the integers from 1 to n. We
consider the process X,[g] on the simplex Ag = {X € R"| deG X[gl = 1; X[g] = 0}. At
each step, choose g € G,r € R and A € [0, 1] uniformly, and set

Xir1lg]l = M(Xi[g] + XilgrD
Xirilgr]l = (1 = M)(Xq[g] + Xi[gr]). ey

For all other & € G set X;41[h] = X,[h]. Let Ug be the uniform distribution on Ag; this is also
the stationary distribution of X;. Also consider a random walk Z; on G, where in each stage we
choose g € G and r € R uniformly at random and set Z, ) = grif Z, = g, set Z,41 = g
if Z; = gr, and Z,;1 = Z; otherwise. This is the standard simple random walk on the Cayley
graph, slowed down by a factor of about n. Let ¥ be the spectral gap of the walk Z;, and follow
the notation that £(X) denotes the distribution of a random variable X.

Theorem 1 (Convergence Rate for Gibbs Sampler with Geometry). For T > %/g log(n), C >
%, and n satisfying n > max (4096, % + %, (% — %) log(n))

_c
IL(X7) — Ugliry < Tn*376

and conversely for T < ?'}

=

1 _ _
I£(X1) = Ugliry = 5e k_4n=3.

This substantially generalizes [20,25], from samplers corresponding to G = Z,, and R =
{1, —1} or R = Z, \ {0} respectively, to general Cayley graphs. In addition to being of
mathematical interest, this process is an example of a gossip process with some geometry,
studied by electrical engineers and sociologists interested in how information propagates through
networks; see [23] for a survey.

The proof of the upper bound will use an auxiliary chain similar to that found in [20], a
coupling argument improved from [25], and an unusual use of comparison theory from [7]. The
proof of the lower bound is elementary.

The next example consists of narrow contingency tables. Beginning with the work of Diaconis
and Efron [4] on independence tests, there has been interest in finding efficient ways to sample
uniformly from the collection of integer-valued matrices with given row and column sums.
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