

Available online at www.sciencedirect.com

SciVerse ScienceDirect

stochastic processes and their applications

Stochastic Processes and their Applications 122 (2012) 522-545

www.elsevier.com/locate/spa

Moments, moderate and large deviations for a branching process in a random environment

Chunmao Huang, Quansheng Liu*

LMAM, Université de Bretagne-Sud, Campus de Tohannic, BP 573, 56017 Vannes, France Université Européenne de Bretagne, France

Received 13 January 2011; received in revised form 23 July 2011; accepted 1 September 2011 Available online 21 September 2011

Abstract

Let (Z_n) be a supercritical branching process in a random environment ξ , and W be the limit of the normalized population size $Z_n/\mathbb{E}[Z_n|\xi]$. We show large and moderate deviation principles for the sequence $\log Z_n$ (with appropriate normalization). For the proof, we calculate the critical value for the existence of harmonic moments of W, and show an equivalence for all the moments of Z_n . Central limit theorems on $W-W_n$ and $\log Z_n$ are also established.

MSC: 60J80; 60K37; 60F10

Keywords: Branching process; Random environment; Moments; Harmonic moments; Large deviation; Moderate deviation; Central limit theorem

1. Introduction and main results

© 2011 Elsevier B.V. All rights reserved.

As an important extension of the Galton–Watson process, the model of branching process in a random environment was introduced first by Smith and Wilkinson [22] for the independent environment case, and then by Athreya and Karlin [4] for the stationary and ergodic environment case. See also [3,23,24] for some basic results on the subject. The study of asymptotic properties of a branching process in a random environment has recently received attention; see for example, [1,2,15,5,6,8,7], among others. Here, for a supercritical branching process (Z_n) in a random

E-mail addresses: sasamao02@gmail.com (C. Huang), quansheng.liu@univ-ubs.fr (Q. Liu).

^{*} Corresponding author at: LMAM, Université de Bretagne-Sud, Campus de Tohannic, BP 573, 56017 Vannes, France. Tel.: +33 2 9701 7140; fax: +33 2 9701 7175.

environment, we shall mainly show asymptotic properties of the moments of Z_n , and prove moderate and large deviation principles for $(\log Z_n)$. In particular, our result on the annealed harmonic moments completes that of Hambly [12] on the quenched harmonic moments, and extends the corresponding theorem of Ney and Vidyashanker [21] for the Galton–Watson process; our moderate and large deviation principles complete the results of Kozlov [15], Bansaye and Berestycki [5], Bansaye and Böinghoff [6] and Böinghoff and Kersting [8] on large deviations.

Let us give a description of the model. Let $\xi = (\xi_0, \xi_1, \xi_2, ...)$ be a sequence of independent and identically distributed (i.i.d.) random variables taking values in some space Θ , whose realization determines a sequence of probability generating functions

$$f_n(s) = f_{\xi_n}(s) = \sum_{i=0}^{\infty} p_i(\xi_n) s^i, \quad s \in [0, 1], \ p_i(\xi_n) \ge 0, \ \sum_{i=0}^{\infty} p_i(\xi_n) = 1.$$
 (1.1)

A branching process $(Z_n)_{n\geq 0}$ in the random environment ξ can be defined as follows:

$$Z_0 = 1, Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i} n \ge 0,$$
 (1.2)

where given the environment ξ , $X_{n,i}(i=1,2,...)$ are independent of each other and independent of Z_n , and have the same distribution determined by f_n .

Let $(\Gamma, \mathbb{P}_{\xi})$ be the probability space under which the process is defined when the environment ξ is given. As usual, \mathbb{P}_{ξ} is called *quenched law*. The total probability space can be formulated as the product space $(\Gamma \times \Theta^{\mathbb{N}}, \mathbb{P})$, where $\mathbb{P} = \mathbb{P}_{\xi} \otimes \tau$ in the sense that for all measurable and positive function g, we have

$$\int g d\mathbb{P} = \int \int g(\xi, y) d\mathbb{P}_{\xi}(y) d\tau(\xi),$$

where τ is the law of the environment ξ . The total probability \mathbb{P} is usually called *annealed law*. The quenched law \mathbb{P}_{ξ} may be considered to be the conditional probability of the annealed law \mathbb{P} given ξ . The expectation with respect to \mathbb{P}_{ξ} (resp. \mathbb{P}) will be denoted \mathbb{E}_{ξ} (resp. \mathbb{E}).

For $\xi = (\xi_0, \xi_1, \ldots)$ and $n \ge 0$, define

$$m_n(p) = m_n(p,\xi) = \sum_{i=0}^{\infty} i^p p_i(\xi_n) \quad \text{for } p > 0,$$
 (1.3)

$$m_n = m_n(1), \qquad \Pi_0 = 1 \text{ and } \Pi_n = m_0 \cdots m_{n-1} \text{ for } n \ge 1.$$
 (1.4)

Then $m_n(p) = \mathbb{E}_{\xi} X_{n,i}^p$ and $\Pi_n = \mathbb{E}_{\xi} Z_n$. It is well known that the normalized population size

$$W_n = \frac{Z_n}{\Pi_n}$$

is a nonnegative martingale under \mathbb{P}_{ξ} (for each ξ) with respect to the filtration $\mathcal{F}_n = \sigma(\xi, X_{k,i}, 0 \le k \le n-1, i=1,2,\ldots)$, so that the limit

$$W = \lim_{n \to \infty} W_n$$

exists almost sure (a.s.) with $\mathbb{E}W \leq 1$. We shall always assume that

Download English Version:

https://daneshyari.com/en/article/1156771

Download Persian Version:

https://daneshyari.com/article/1156771

Daneshyari.com