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Abstract

We consider the stochastic volatility model

dYt = σt dBt ,

with B a Brownian motion and σ of the form

σt = Φ

(∫ t

0
a(t, u)dW H

u + f (t)ξ0

)
,

where W H is a fractional Brownian motion, independent of the driving Brownian motion B, with Hurst
parameter H ≥ 1/2. This model allows for persistence in the volatility σ . The parameter of interest is H .
The functions Φ, a and f are treated as nuisance parameters and ξ0 is a random initial condition. For a
fixed objective time T , we construct from discrete data Yi/n, i = 0, . . . , nT , a wavelet based estimator of
H , inspired by adaptive estimation of quadratic functionals. We show that the accuracy of our estimator is
n−1/(4H+2) and that this rate is optimal in a minimax sense.
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1. Introduction

1.1. Stochastic volatility and volatility persistence

Since the celebrated model of Black and Scholes, the behavior of financial assets is often
modelled by processes of type

dSt = µt dt + σt dBt ,

where S is the price (or the log-price) of the asset, B a Brownian motion and µ a drift
process. The volatility coefficient σ represents the fluctuations of S and plays a crucial role
in trading, option pricing and hedging. It is well known that stochastic volatility models,
where the volatility is a random process, provide a way to deal with the endemic time-varying
volatility and to reproduce various stylized facts observed on the markets; see Shephard [34],
Barndorff-Nielsen, Nicolato and Shephard [3]. Among these stylized facts, there are many
arguments about volatility persistence. This presence of memory in the volatility has in particular
consequences for option pricing; see Ohanissian, Russel and Tsay [32], Taylor [35], Comte,
Coutin and Renault [11]. Hence, continuous time dynamics have been introduced to capture
this phenomenon; see Comte and Renault [12], Comte, Coutin and Renault [11] or Barndorff-
Nielsen and Shephard [4]. However, in statistical finance, the question of the volatility persistence
has been mostly treated with discrete time models; see among others Breidt, Crato and De
Lima [6], Harvey [18], Andersen and Bollerslev [1], Robinson [33], Hurvich and Soulier [22],
Teyssière [36]. Concurrently, statistical methods for detecting this volatility persistence have
been specifically developed for these models; see Hurvich, Moulines and Soulier [20], Deo,
Hurvich and Lu [14], Hurvich and Ray [21], Lee [26], Jensen [24]. In this paper, our objective
is to build, for continuous time models, a statistical program allowing us to recover information
about the volatility persistence.

1.2. A diffusion model with fractional stochastic volatility

We consider a class of diffusion models whose volatility is a non-linear transformation of a
stochastic integral with respect to fractional Brownian motion. Recall that a fractional Brownian
motion (W H

t , t ∈ R), with Hurst parameter H ∈ (0, 1], is a self-similar centered Gaussian
process with covariance function

E[W H
t W H

s ] =
1
2
(|s|2H

+ |t |2H
− |t − s|2H ).

If H > 1/2, the use of fractional Brownian motion (fbm for short) is a way to allow for
persistence. Indeed, its increments are then stationary, positively correlated and the value of the
Hurst parameter quantifies the presence of so-called long memory between them; see Mandelbrot
and Van Ness [27], Taqqu [15]. We define on a rich enough probability space (Ω ,A,P) a
Brownian motion B, a fractional Brownian motion W H , independent of B, with unknown Hurst
parameter H ∈ (1/2, 1), and a random variable ξ0, measurable with respect to the sigma algebra
generated by (W H

t , t ≤ 0). We fix an objective time T > 0 and we consider the one-dimensional
stochastic process Y defined by

Yt = y0 +

∫ t

0
σs dBs, y0 ∈ R, t ∈ [0, T ], (1)



Download English Version:

https://daneshyari.com/en/article/1156970

Download Persian Version:

https://daneshyari.com/article/1156970

Daneshyari.com

https://daneshyari.com/en/article/1156970
https://daneshyari.com/article/1156970
https://daneshyari.com

