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A B S T R A C T

Voids and dislocation loops are two major types of damages in irradiated structural materials, which are mainly
responsible for the degradation of material properties. Here we use the phase-field model and rate theory to
simulate the microstructural evolution of voids and dislocation loops, respectively, in irradiated bcc iron and
vanadium. The temperature-dependent material parameters of iron and vanadium are derived from ab initio
calculations. The simulated results at different temperatures (513 K, 623 K and 722 K) and irradiation doses
(1∼20 dpa) are analyzed to reveal the impact of irradiation conditions on the formation of irradiation-induced
defect clusters. A comparison of the results shows larger void porosity and void/loop size in iron and higher
void/loop density in vanadium. Then, a dispersed-barrier hardening model is used to correlate the mesoscale
simulation results on microstructure with the yield stress change of the materials.

1. Introduction

Numerous Frenkel pairs are generated within the primary knocked-
on atom (PKA) cascade in a structural material subjected to high-energy
particles irradiation [1]. Vacancies and self-interstitials diffusion, re-
combination and aggregation result in the formation of defect clusters
(e.g., voids and dislocation loops). Such irradiation damages lead to
hardening, swelling and creep of a material [2], which is a critical
concern for the stability and lifetime of materials used in a nuclear
reactor.

To date, the formation mechanisms of voids and dislocation loops in
many irradiated materials have been extensively studied from both
experimental and theoretical aspects [3,4,5,6,7]. The dependences of
void and dislocation loop formations on the pre-irradiated micro-
structure, impurities, temperature and irradiation dose have been ap-
propriately considered. Multiscale modeling is used to unveil the un-
derlying mechanism of irradiation damage effects in a hierarchical
manner. Phase-field model and rate theory are two typical mesoscale
methods to simulate defects production, accumulation, recombination
and annihilation during irradiation [8,9,10,11,12,13]. The phase-field
method is able to predict microstructure evolution using a set of order
parameters based on the principle of total Gibbs free energy mini-
mization following the Cahn-Hilliard and time-dependent Ginsburg-
Landau equations [14]. To describe the evolution of microstructure in

terms of chemical rate processes, the mean-field rate theory has been
used to calculate the reaction rates of point defects with other defects
and extended sinks on average over the material [15].

In the early stage of irradiation, vacancies are difficult to aggregate
into clusters, while interstitials are more likely to form clusters. This is
due mainly to the distinct difference in their mobilities, for example,
the vacancy mobility is ∼1.64 jumps per second while interstitial
mobility is ∼2.57×103 jumps per second in the neutron irradiated
iron at 473 K [16]. Given this fact, it is difficult to capture the formation
of voids and dislocation loops simultaneously within the phase-field
method. Pervious phase-field simulation studies focused on the evolu-
tion of voids/bubbles [9,10,17,18,19] and dislocation loops [20,21,22]
separately. Mean-field rate theory is commonly used to explore the
evolution of defect clusters [8,11,13,23,24,25] at the same time.

In this study, we investigate the effects of temperature and irra-
diation dose on the evolution of irradiation-induced voids and inter-
stitial-type dislocation loops by imposing the temperature-dependent
material parameters. The radii of voids are simulated using the phase-
field model and rate theory, respectively, under the same irradiation
condition. The evolution of dislocation loops are investigated by the
rate equations. Mesoscale simulations are performed on bcc iron and
vanadium. These two metals are the major components of ferritic/
martensitic steels and vanadium alloys (e.g., V-Ti-Cr alloys), respec-
tively, which are the candidate materials for the first wall and blanket
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structures of fusion reactor due to their good mechanical properties and
high irradiation resistance [26,27]. From the simulation results, we find
that voids and dislocation loops are more likely to form in vanadium
than in iron. Furthermore, the increase in yield strength due to irra-
diation-induced defect clusters is evaluated.

2. Methods

2.1. Phase-field model for void formation

Two phases (void and matrix) and two components (vacancy (v) and
self-interstitial (i)) are considered in the current phase-field model. The
vacancy concentration cv and interstitial concentration ci are conserved
fields, and the order parameter η is a non-conserved field that distin-
guishes the structural difference between void ( =η 1) and matrix
( =η 0) phases, which changes continuously from 1 to 0 across inter-
faces between void and matrix. The total free energy of such a system is
given by
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where N is the number of lattice sites per unit volume of a material,
f matrix is the free energy of the matrix phase, f void is the free energy of
the void phase, h is an interpolation function to connect two free energy
curves as function of concentrations only in the dimension of the order
parameter η, g is the double-well potential, ωo is the barrier height of the
double-well potential, and κ is the gradient energy coefficient.

The free energy of the matrix phase ( f matrix), including the enthalpy
and entropy contributions of vacancy and interstitial in the matrix
phase, is expressed as [28]
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where ceq is the equilibrium concentration of vacancy or interstitial, E f

is the formation energy of vacancy or interstitial, S f is the formation
entropy of vacancy or interstitial, kB is the Boltzmann constant, and T is
the absolute temperature. The free energy of the void phase ( f void) is
related to vacancy and interstitial concentrations

= − +f c c k T c c( , ) (( 1) )void
v i B v i

2 2 (3)

Void phase can be considered as consisting of 100% vacancies (i.e.,
=c 1v and =c 0i ). This formulism describes the growth of a vacancy

cluster by absorbing vacancies and the shrinkage of a void by emitting
vacancies or absorbing interstitials from the surrounding matrix. In
addition, it ensures the minimum free energy of void phase ( =f 0void )
is in the case of =c 1v and =c 0i . The coefficient k TB in Eq.(3) is used
to normalize the free energy of void phase in the following calculations
[29]. The function = − +η η η ηh( ) (6 15 10)3 2 is frequently used to in-
terpolate the interface between the matrix and void phases. The double-
well potential (g), which represents the energy barrier at the matrix/
void interface, adopts the following form [28]
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where B1 to B6 are constants and set as 1.0.
The time-evolution of two conserved fields, cv and ci, and the non-

conserved field, η, are described by the Cahn-Hilliard nonlinear diffu-
sion equation and the time-dependent Ginsburg-Landau (or Allen-Cahn)
equation, respectively. Since the point defects (i.e., vacancies and self-
interstitials) are produced during irradiation and their interaction can
affect the evolution of the conserved field, a production term P and a

recombination term Riv are added in the conserved fields. In addition,
the structural defects in materials, such as grain boundaries and dis-
locations, are the sinks for vacancies and self-interstitials, which can
influence the evolution of defect clusters. The point defect concentra-
tion fields and the evolution of the order parameter are constructed as
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where M is the mobility of a given type of point defect and is expressed
as =M D k Tc B , D is the diffusivity, L is the mobility of void surface,
Rsink is the sink term, and ξ is the Langevin noise terms characterizing
thermal fluctuations in the composition and structural order parameter,
respectively. Usually, the Langevin noise term follows the normal dis-
tribution and they are switched off at some later time when enough
nuclei have been generated. To ensure void nucleation to take place
during a stochastic process, small integration time steps and fine length
scales are required to capture the void formation phenomena using
Langevin equation in a quantitative way [30].

The spatial distribution of defects shows a vacancy cluster at the
center of cascade and an interstitial rich out-shell during the displace-
ment cascade. Large fractions of Frenkel pairs recombine within the
cascade core. From molecular dynamics simulations, Stoller [31] found
that the surviving fractions of interstitials and vacancies vary from
∼1.0 at low cascade energy to ∼0.3 for high cascade energy greater
than 10 keV under neutron energy spectrum. In our phase-field model,
the vacancy source term Pv and the self-interstitial source term Pi are
related to the irradiation condition. For example, if the order parameter
η is less than 0.8 and the random number Ran is less equal than the
probability of a cascade occurring within a volume per time (Pcasc in
unit of dpa/s), the production of point defects can be expressed as

= =P BP P V1 casc Gv i . Here VG is the maximum increase in vacancy (or
interstitial) concentration due to irradiation [32] and VG=1 is used in
the simulations to ensure the increment of defects concentrations, and B
is a bias between vacancy and interstitial production efficiencies in the
cascade, which is highly sensitive to the void growth rate [33]. Based
on the production bias model, the difference in the stability and lifetime
between vacancy and interstitial clusters produced during the cascade
process shows an asymmetric production in the amounts of vacancies
and interstitials [33,34]. This production bias is considered as a potent
driving force for void growth under the cascade damage condition. In
the current phase-field model of irradiation-induced void, a bias B in

=P BPi v is chosen to mimic the dislocation bias that the self-interstitial
atoms prefer to being absorbed at the dislocation, leading to vacancy
accumulation and void formation. Millett et al. suggested a production
bias of 0.9 by creating 10% more vacancies inside the system, which is
able to mimic a dislocation bias [10].

Vacancies and self-interstitials diffuse randomly through the lattice
and combine with each other to annihilate. The recombination term in
Eqs.(5)–(6) is given by =R R c civ r v i, which mimics the recombination
expression in the rate theory [35]. It should be pointed out that in
addition to the vacancy-interstitial recombination in the matrix, the
interstitial atom arriving at the void/matrix interface will lose its
identity and the corresponding mutual recombination may differ from
that in the matrix. According to Ref. [10], a rate parameter Rr depen-
dent on both bulk and surface terms is considered as

= +R R η Rr
bulk surf2 . In this case, the structural order parameter η allows

us to consider the recombination process that occurs in either matrix or
void. The vacancy and interstitial annihilation at sinks can be described
by = −R D c ck ( )sink

n n n
eq

n n
2 with n = v, i, where kn

2 is the total sink
strength of structural defects (e.g., grain boundary and dislocation) for
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