## Note

# New upper bound for multicolor Ramsey number of odd cycles ${ }^{\text {² }}$ 

Qizhong Lin ${ }^{\text {a,*, }}$, Weiji Chen ${ }^{\text {b }}$<br>a Center for Discrete Mathematics, Fuzhou University, Fuzhou 350108, China<br>${ }^{\text {b }}$ College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China

## ARTICLE INFO

## Article history:

Received 1 September 2016
Received in revised form 13 March 2018
Accepted 8 September 2018
Available online xxxx

## Keywords:

Ramsey number
Odd cycle
Upper bound

$$
\begin{aligned}
& \text { A B S T R A C T } \\
& \text { Let } r_{k}\left(C_{2 m+1}\right) \text { be the } k \text {-color Ramsey number of an odd cycle } C_{2 m+1} \text { of length } 2 m+1 \text {. It is } \\
& \text { shown that for each fixed } m \geq 2 \text {, } \\
& \qquad r_{k}\left(C_{2 m+1}\right)<c^{k} \sqrt{k!}
\end{aligned}
$$

for all sufficiently large $k$, where $c=c(m)>0$ is a constant. This improves an old result by Bondy and Erdős (1973).
© 2018 Elsevier B.V. All rights reserved.

## 1. Introduction

Let $G$ be a graph. The multicolor Ramsey number $r_{k}(G)$ is defined as the minimum integer $N$ such that each edge coloring of the complete graph $K_{N}$ with $k$ colors contains a monochromatic $G$ as a subgraph. The Turán number ex $(N ; G)$ is the maximum number of edges among all graphs of order $N$ that contain no $G$. For the complete bipartite graph $K_{t, s}$ with $s \geq t$, a well known argument of Kövári, Sós, and Turán [15] gives that ex $\left(N ; K_{t, s}\right) \leq \frac{1}{2}\left[(s-1)^{1 / t} N^{2-1 / t}+(t-1) N\right]$. For large $N$, the upper bound was improved by Füredi [11] to $\frac{1}{2}\left((s-t+1)^{1 / t}+o(1)\right) N^{2-1 / t}$. Let $N=r_{k}\left(K_{t, s}\right)-1$. Since there exists a $k$-coloring of the edges of $K_{N}$ such that it contains no monochromatic $K_{t, s}$, each color class can have at most ex $\left(N ; K_{t, s}\right)$ edges. Thus $\binom{N}{2} \leq k \cdot e x\left(N ; K_{t, s}\right)$. From an easy calculation, we have $r_{k}\left(K_{t, s}\right) \leq(s-t+1+o(1)) k^{t}$ as $k \rightarrow \infty$. Hence $r_{k}(G)$ can be bounded from above by a polynomial of $k$ if $G$ is a bipartite graph.

However, the situation becomes dramatically different when $G$ is non-bipartite. Denote $r_{k}\left(K_{3}\right)$ by $r_{k}(3)$ for short. An old problem proposed by Erdős is to determine

$$
\lim _{k \rightarrow \infty}\left(r_{k}(3)\right)^{1 / k}
$$

It is known from Chung [3] that $r_{k}(3)$ is super-multiplicative in $k$ so that $\lim _{k \rightarrow \infty}\left(r_{k}(3)\right)^{1 / k}$ exists. Up to now, we only know that

$$
1073^{k / 6} \leq r_{k}(3) \leq c \cdot k!
$$

where $c>0$ is a constant, see $[1,4,8,10,20]$ and their references for more details.

[^0]Let $C_{2 m+1}$ be an odd cycle of length $2 m+1$. For $m=1$, the multicolor Ramsey number $r_{k}(3)$ has attracted a lot of attention. For general fixed integer $m \geq 2$, Erdős and Graham [7] showed that

$$
\begin{equation*}
m 2^{k}<r_{k}\left(C_{2 m+1}\right)<2(k+2)!m \tag{1}
\end{equation*}
$$

Bondy and Erdős [2] observed that

$$
\begin{equation*}
m 2^{k}+1 \leq r_{k}\left(C_{2 m+1}\right) \leq(2 m+1) \cdot(k+2)! \tag{2}
\end{equation*}
$$

For the lower bound, a recent result by Day and Johnson [6] gives that for $m \geq 2$, there exists a constant $\epsilon=\epsilon(m)>0$ such that $r_{k}\left(C_{2 m+1}\right)>2 m \cdot(2+\epsilon)^{k-1}$ for all large $k$. The upper bound was improved by Graham, Rothschild and Spencer [12] to $r_{k}\left(C_{2 m+1}\right)<2 m \cdot(k+2)$ !. In particular, for $m=2$, Li [16] showed that $r_{k}\left(C_{5}\right) \leq c \sqrt{18^{k} k!}$ for all $k \geq 3$, where $0<c<1 / 10$ is a constant. However, there has not been substantial progress on the value of $r_{k}\left(C_{2 m+1}\right)$ for $m \geq 3$.

Let us point out that the situation is much different when $k$ is fixed. For $k=2$, Bondy and Erdős [2], Faudree and Schelp [9] and Rosta [19] independently obtained that $r_{2}\left(C_{2 m+1}\right)=4 m+1$ for all $m \geq 2$. For $k=3$, Łuczak [18] proved that $r_{3}\left(C_{2 m+1}\right)=(8+o(1)) m$ as $m \rightarrow \infty$ by using the regularity lemma. Kohayakawa, Simonovits and Skokan [14] used Łuczak’s method together with stability methods to prove that $r_{3}\left(C_{2 m+1}\right)=8 m+1$ for sufficiently large $m$. Recently, Jenssen and Skokan [13] established that $r_{k}\left(C_{2 m+1}\right)=2^{k} m+1$ for all fixed $k$ and sufficiently large $m$.

In this short note, we have an upper bound for $r_{k}\left(C_{2 m+1}\right)$ as follows.
Theorem 1. Let $m \geq 2$ be a fixed integer. We have

$$
r_{k}\left(C_{2 m+1}\right)<c^{k} \sqrt{k!}
$$

for all sufficiently large $k$, where $c=c(m)>0$ is a constant.
Remark. We do not attempt to optimize the constant $c=c(m)$ in the above theorem, since we care more about the exponent of $k$ !.

Let $N=r_{k}(G)-1$. From the definition, there exists a $k$-edge coloring of $K_{N}$ containing no monochromatic $G$. In such an edge coloring, any graph induced by a monochromatic set of edges is called a Ramsey graph. Let $\epsilon>0$ be a constant. Under the assumption that each Ramsey graph $H$ for $r_{k}\left(C_{2 m+1}\right)$ has minimum degree at least $\epsilon d(H)$ for large $k$, Li [16] showed that $r_{k}\left(C_{2 m+1}\right) \leq\left(c^{k} k!\right)^{1 / m}$, where $d(H)$ is the average degree of $H$ and $c=c(\epsilon, m)>0$ is a constant.

## 2. Proof of the main result

In order to prove Theorem 1, we need the following well-known result.
Theorem 2 (Chvátal [5]). Let $T_{m}$ be a tree of order $m$. We have

$$
r\left(T_{m}, K_{n}\right)=(m-1)(n-1)+1
$$

For a graph $G$, let $\alpha(G)$ denote the independence number of $G$.
Lemma 1 (Li and Zang [17]). Let $m \geq 2$ be an integer and let $G=(V, E)$ be a graph of order $N$ that contains no $C_{2 m+1}$. We have

$$
\alpha(G) \geq \frac{1}{(2 m-1) 2^{(m-1) / m}}\left(\sum_{v \in V} d(v)^{1 /(m-1)}\right)^{(m-1) / m}
$$

where $d(v)$ is the degree of $v$ in graph $G$.
Proof of Theorem 1. Let $m \geq 2$ and $k \geq 3$ be integers. For convenience, let $r_{k}=r_{k}\left(C_{2 m+1}\right)$ and $N=r_{k}-1$. Let $K_{N}=(V, E)$ be the complete graph on vertex set $V$ of order $N$. From the definition, there exists an edge-coloring of $K_{N}$ using $k$ colors such that it contains no monochromatic $C_{2 m+1}$. Let $E_{i}$ denote the monochromatic set of edges in color $i$ for $i=1,2, \ldots, k$. Without loss of generality, we may assume that $E_{1}$ has the largest cardinality among all $E_{i}$ 's. Therefore $\left|E_{1}\right| \geq\binom{ N}{2} / k$. Let $G$ be the graph with vertex set $V$ and edge set $E_{1}$. Then the average degree $d$ of $G$ satisfies

$$
d=\frac{2\left|E_{1}\right|}{N} \geq \frac{N-1}{k}=\frac{r_{k}-2}{k}
$$

Consider an independent set $I$ of $G$ with $|I|=\alpha(G)$. Since any edge of $K_{N}$ between two vertices in $I$ is colored by one of the colors $2,3, \ldots, k$, the subgraph induced by $I$ is an edge-colored complete graph using $k-1$ colors, which contains no monochromatic $C_{2 m+1}$. Thus $|I| \leq r_{k-1}-1$, and thus Lemma 1 implies that

$$
\begin{equation*}
r_{k-1}-1 \geq a\left(\sum_{v \in V} d(v)^{1 /(m-1)}\right)^{(m-1) / m} \tag{3}
\end{equation*}
$$

where $a=a(m)$ is a constant.

# https://daneshyari.com/en/article/11592567 

Download Persian Version:
https://daneshyari.com/article/11592567

## Daneshyari.com


[^0]:    $\star$ Supported in part by $\operatorname{NSFC}$ (11671088), NSFFP (2016J01017) and China Scholarship Council (201406655002).

    * Corresponding author.

    E-mail address: linqizhong@fzu.edu.cn (Q. Lin).

