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a b s t r a c t

Given two graphs G and H , the rainbow number rb(G,H) for H with respect to G is defined
as the minimum number k such that any k-edge-coloring of G contains a rainbow H , i.e.,
a copy of H , all of whose edges have different colors. Denote by kK2 a matching of size k
and Tn the class of all plane triangulations of order n, respectively. In Jendrol′ et al. (2014),
the authors determined the exact values of rb(Tn, kK2) for 2 ≤ k ≤ 4 and proved that
2n+ 2k− 9 ≤ rb(Tn, kK2) ≤ 2n+ 2k− 7+ 2

(2k−2
3

)
for k ≥ 5. In this paper, we improve the

upper bounds and prove that rb(Tn, kK2) ≤ 2n + 6k − 16 for n ≥ 2k and k ≥ 5. Especially,
we show that rb(Tn, 5K2) = 2n + 1 for n ≥ 11.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are undirected, finite and simple.We follow [3] for graph theoretical notation and terminology not
defined here. Let G be a connected graphwith vertex set V (G) and edge set E(G). For any two disjoint subsets X and Y of V (G),
we use EG(X, Y ) to denote the set of edges of G that have one end in X and the other in Y . We also denote EG(X, X) = EG(X).
Let e(G) denote the number of edges of G, eG(X, Y ) the number of edges of EG(X, Y ), eG(X) the number of edges of EG(X). If
X = {x}, then we write EG(x, Y ) and eG(x, Y ), respectively. For a vertex x ∈ V (G), we use NG(x) to denote the set of vertices
in G which are adjacent to x. We define dG(x) = |NG(x)|. Given vertex sets X, Y ⊆ V (G), the subgraph of G induced by X ,
denoted G[X], is the graph with vertex set X and edge set {xy ∈ E(G) : x, y ∈ X}. We denote by Y\X the set Y − X .

A subgraph of an edge-colored graph is rainbow if all of its edges are colored distinct. Given two graphs G and H , the
rainbow number rb(G,H) for H with respect to G is defined as the minimum number k such that any k-edge-coloring of G
contains a rainbow copy of H . When G = Kn, the rainbow number is closely related to anti-Ramsey number, which was
introduced by Erdős, Simonovits and Sós [5] in 1975. The anti-Ramsey number, denoted by f (Kn,H), is themaximum number
c for which there is a way to color the edges of Kn with c colors such that every subgraph H of Kn has at least two edges of
the same color. Clearly, rb(Kn,H) = f (Kn,H) + 1.

Let Tn denote the class of all plane triangulations of order n. We denote by rb(Tn,H) the minimum number of colors
k such that, if H ⊆ Tn ∈ Tn, then any edge-coloring of Tn with at least k colors contains a rainbow copy of H . The rainbow
number has beenwidely studied. The rainbow numbers formatchings with respect to complete graph have been completely
determined step by step in [4–6,22]. Also, the rainbownumbers for some other special graph classes in complete graphs have
been obtained, see [1,8,11–14,20]. Meanwhile, the researchers studied the rainbow number when host graph changed from
the complete graph to others, such as complete bipartite graphs [2,18], planar graphs [9,10,15,17], hypergraphs [21], etc. For
more results on rainbow numbers, we refer to the survey [7].
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In this paper we study the rainbow number when host graphs are plane triangulations. Let Tn be the family of all plane
triangulations on n vertices. As one of the most important structures in graphs, the study of rainbow number in plane
triangulations rb(Tn,H) was initiated by Horňák et al. [9]. Horňák et al. [9] investigated the rainbow numbers for cycles.
Very recently, Lan, Shi and Song [17] improve some bounds for the rainbow number of cycles, and also get some results
for paths. Jendrol′, Schiermeyer and Tu [10] investigated the rainbow numbers for matchings in plane triangulations. We
summarize their results as follows, where kK2 denotes a matching of size k.

Theorem 1.1 ([10]).
(1) 2n + 2k − 9 ≤ rb(Tn, kK2) ≤ 2n + 2k − 7 + 2

(2k−2
3

)
for all k ≥ 5.

(2) rb(Tn, 2K2) =

{
4 n = 4;
2 n ≥ 5.

(3) rb(Tn, 3K2) =

{
8 n = 6;
n + 1 n ≥ 7.

(4) rb(Tn, 4K2) = 2n − 1 for all n ≥ 8.

Recently, Jin and Ye [15] investigated the rainbow numbers of kK2 in the maximal outerplanar graphs. In this paper, we
improve the upper bounds and prove that rb(Tn, kK2) ≤ 2n + 6k − 16 for n ≥ 2k and k ≥ 5. Especially, we show that
rb(Tn, 5K2) = 2n + 1 for n ≥ 11 by using the method of Jendrol′, Schiermeyer and Tu [10].

Theorem 1.2. For n ≥ 2k and k ≥ 5, rb(Tn, kK2) ≤ 2n + 6k − 16.

Theorem 1.3. For n ≥ 11, rb(Tn, 5K2) = 2n + 1.

The following theoremwill be used in our proof. A graph G is called factor-critical if G− v contains a perfect matching for
each v ∈ V (G). A graph is called hypoHamiltonian if for every vertex u, G − u is Hamiltonian.

Theorem 1.4 ([19]). Given a graph G = (V , E) and |V | = n, let d be the size of a maximum matching of G. Then there exists a
subset S with |S| ≤ d such that

d =
1
2
(n − (o(G − S) − |S|)),

where o(H) is the number of components in the graph H with an odd number of vertices. Moreover, each odd component of G− S
is factor-critical.

Lemma 1.5. Let G be a planar triangulation on n ≥ 4 vertices. Then

(a) [10,16] for 5 ≤ n ≤ 7, G is hypoHamiltonian.
(b) G is 3-connected.

2. Proof of Theorem 1.2

By induction on k. The statement is true for k ≤ 4 by Theorem 1.1. Now we assume k ≥ 5. Let Tn be a plane
triangulation on n vertices. By contradiction, let c be an edge-coloring of Tn with 2n + 6k − 16 colors such that Tn does
not contain any rainbow kK2. Let G be a rainbow spanning subgraph of Tn with 2n+ 6k− 16 edges. Then G is kK2-free. Since
2n + 6k − 16 > 2n + 6(k − 1) − 16, G contains a (k − 1)K2 by the induction hypothesis. Let u1w1, u2w2, . . . , uk−1wk−1 be a
(k−1)K2 of G, and letH be an induced subgraph by {u1, . . . , uk−1, w1, . . . , wk−1} in G. Then eG(H) ≤ 3(2k−2)−6 = 6k−12.

Let R = V (G)\V (H). Since G is kK2-free, E(G[R]) = ∅. Then we have G − EG(H) is a bipartite planar graph with n vertices,
which implies eG(V (H), R) ≤ 2n − 4. Thus, e(G) = eG(H) + eG(V (H), R) ≤ 6k − 12 + 2n − 4 = 2n + 6k − 16. Since
e(G) = 2n + 6k − 16, we have eG(H) = 6k − 12 and eG(V (H), R) = 2n − 4. Hence, G[V (H)] is a plane triangulation with
2k − 2 vertices and G − EG(H) is a maximal bipartite planar graph with n vertices. Since u1w1 ∈ E(G), there must exist a
quadrangular face with vertices u1, r1, w1, r2 in order in G−EG(H), where r1, r2 ∈ R. But then the graph induced by the edges
u1r1, w1r2, u2w2,. . . , uk−1wk−1 is a rainbow subgraph of Tn isomorphic to kK2, a contradiction.

3. Proof of Theorem 1.3

By Theorem 1.1, we only need to show that rb(Tn, 5K2) ≤ 2n+ 1. Suppose rb(Tn, 5K2) ≥ 2n+ 2. Then there exists a plane
triangulation Tn on n vertices containing no rainbow5K2 under an edge-coloring c used 2n+1 colors. LetG ⊂ Tn be a rainbow
spanning subgraph with 2n + 1 edges. Then G has no a copy of 5K2. By Theorem 1.1, G has a copy of 4K2. By Theorem 1.4,
there exists an S ⊆ V (G) with |S| = s ≤ 4, such that q = o(G − S) = n − 8 + s. Let A1, . . . , Aq be all the odd components of
G − S. Assume |V (Ai)| = ai for each i ∈ [q] and a1 ≥ a2 ≥ · · · ≥ aq. Let t = min{i : ai = 1} and V0 = {vt , . . . , vq}, where
vj ∈ V (Aj). Assume dG(vt ) ≥ dG(vt+1) ≥ · · · ≥ dG(vq). Let B denote the set of vertices of all the even components of G − S.
We first prove a useful claim.
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