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a b s t r a c t

In this work, we study numerically a model which describes cell dwarfism. It consists in a
pure initial value problem for a first order partial differential equation, that can be applied
to the description of the evolution of diseases as thalassemia. We design two numerical
methods that prevent the use of the characteristic curve x = 0, and derive their optimal
rates of convergence. Numerical experiments are also reported in order to demonstrate
the predicted accuracy of the schemes. Finally, a comparison study on their efficiency is
presented.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We analyze, from a numerical point of view, a cell population balance model (CPBM) in which cells are distinguished
by their individual size. CPBM were introduced in the early 1960s within the framework of particle dynamics in chemical
and cellular contexts [1–3]. From a formal point of view, CPBM can be defined as the balance equation that accounts for the
various processes that change the number of cells in a population. In general, it takes the form of a first-order integro-partial
differential equation, along with boundary and initial condition. From a theoretical point of view, mathematical treatment
of linear CPBMs has been developed since the early 1980s [4–6], where the study of the well-posedness, the convergence
towards an asymptotically stable-size distribution and the stability analysis were made. In the case of a nonlinear model, the
theoretical properties of existence and uniqueness of solutions have been addressed in [5].

The CPBM that we consider in this paper is based upon the model developed by Diekmann et al. [4], where cell-size is
used to distinguish individuals in the population. We use the version presented in [7],

ut (x, t) + (x u(x, t))x = (ν(x) − µ(x) − b(x)) u(x, t) + 4 b(2 x) u(2 x, t),
0 < x < 1, t > 0, (1.1)

u(x, 0) = ϕ(x), 0 < x ≤ 1, (1.2)
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where the population of cells is described by a density function u(x, t), t represents time and x measure the cell-size.
Functions µ, b and ν explain different processes which take place within the population. In this model, cells grow
exponentially, x′(t) = x(t), as in a petri dish experiment, and diewith death rateµ(x) depending on cellular size.With respect
to the division process, we have considered a division in which the mother cell splits into two equal cells [4]. Note that the
exponential growth introduces the unavailability of a boundary condition at size x = 0, thus cell renewal is introduced
through the division b(x) and immigration ν(x) rates. If we deal with a closed system (petri dish), it is usual to consider
ν(x) = 0, however other biologically significant systems are not closed, for example the blood production system which
needs to replace the red blood cells daily in order to regulate the blood cells count (stem cell regulation). We want to point
out that a proper combination of growth, division and mortality rates would introduce a natural maximum cell size [8],
otherwise we could fix it as one (normalized) and we would consider that larger cells may only grow and die. As in [7], we
assume µ and b are both positive, uniformly continuous functions on (0, 1), with support in the interval [0, 1] and ν(x) is a
nonnegative, uniformly continuous function bounded above in the interval [0, 1]. We also assume that the environment is
unlimited and all possible nonlinear mechanisms are ignored. Function ϕ is the initial state of the population density.

The usual CPBM, as developed in [4], assumes that a cell does not divide until it reaches a minimal cell size a > 0, which
generates a minimal cellular size a/2. However, model (1.1)– (1.2) allows a cell of any size in the interval (0, 1] to divide.
Therefore, the minimal cellular size is a = 0. Although the idea of a cell with zero size is biologically unrealistic, we use it as
the limiting value to describe an abnormality in the cellular division process: the production of unfunctional ‘‘dwarf’’ cells.
These kind of cells are observed in a group of inherit blood disorders that affect the body’s ability to produce hemoglobin
and red blood cells: thalassemia. These hereditary blood disorders (anemias) are one of the most common human genetic
abnormalities known and they are prevalent in tropical and subtropical world regions wheremalaria is still epidemic. Major
α-thalassemia disorder (hydrops fetalis) has a high lethality rate and it has become an important public health problem due
to population migrations. Besides, carriers of (minor) α-thalassaemia are found at high frequencies and they are usually
asymptomatics. The disorders are caused by the absence or decreased production of the α chain of hemoglobin. In healthy
persons, the synthesis of α and β-globin chains is finely balanced during terminal erythroid differentiation, giving rise to red
blood cells of consistent size (reflected in the mean corpuscular volume (MCV)) and hemoglobin content (mean corpuscular
hemoglobin (MCH)). Thus, minor forms of thalassemia are associated with smaller red blood cells than normal, a condition
known asmicrocytosis which are only distinguishable throughMCV. Finally, these diseases also can be associatedwith other
blood disorders as the myelodysplastic syndrome [9–11].

Some theoretical properties of the model (1.1)– (1.2) were developed in [7]. In that work, the author addressed the
existence and uniqueness of generalized solutions and their stability and unstability. On the one hand, he established the
conditions on the data functions bounds to obtain a strongly stable solution, that biologically shows the extinction of the
population. On the other hand, he proposed the data functions properties that leads to the topological transitivity of the
different cellular generations. It includes the erratic behavior customarily associated with chaos. Such an issue has been
subsequently refined in [12,13] and references therein.

These theoretical properties can be studied without a solution expression. However, the knowledge of their qualitative
or quantitative behavior in a more tangible way is sometimes necessary. Therefore, numerical methods provide a valuable
tool to obtain such an information. In the case of general structured populationmodels, many numerical methods have been
proposed to solve them (see [14,15] and references therein). With respect to the study of CPBMs, different techniques have
been used for both symmetric and asymmetric division rates (see [8,16–18] and the references therein). However, all of
them are proposed for the solution of models with a minimal cell division size, and it is very important to design numerical
schemes specially adapted to the features of this particular CPBM. For this model, there is an expression of the generalized
solution but this formula does not possess an easy computational form, even in simple situations [7].

In this work, we present and analyze two first-order procedures: a natural grid method and an upwind scheme which
are specially adapted to obtain the solution to the problem (1.1)– (1.2).

In Section 2we describe the proposed numericalmethods. In Section 3we analyze their convergence to the exact solution
and, in Section 4,we carry out a representative numerical simulation, including a comparison of the efficiency of themethods.

2. Numerical methods

We will introduce two numerical methods of first order adapted to different peculiarities of this particular model. On
one hand, note that there is a characteristic curve at x = 0. Therefore, we avoid to use this ‘‘unknown’’ information into our
numerical schemes. On the other hand, the solution of the problem is only first-order continuously differentiable, therefore
we elude higher order methods. The first proposal is based on the integration along the characteristic curves, the other one
consists on a finite difference method connected to an upwind technique.

2.1. Natural grid method (NGM)

This numerical integration is based on the discretization of the solution along the characteristic curves. Therefore, we
define µ∗(x) = 1 + µ(x) + b(x) − ν(x) and rewrite (1.1) as

ut (x, t) + x ux(x, t) = −µ∗(x) u(x, t) + 4 b(2 x) u(2 x, t), (2.1)
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