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On Cartesian product of Euclidean distance matrices ∗

Ravindra B. Bapat † Hiroshi Kurata ‡

Abstract

If A ∈ R
m×m and B ∈ R

n×n, we define the product A�B as A�B = A⊗ Jn +
Jm ⊗ B, where ⊗ denotes the Kronecker product and Jn is the n× n matrix of all
ones. We refer to this product as the Cartesian product of A and B since if D1 and
D2 are the distance matrices of graphs G1 and G2 respectively, then D1�D2 is the
distance matrix of the Cartesian product G1�G2. We study Cartesian products of
Euclidean distance matrices (EDMs). We prove that if A and B are EDMs, then
so is the product A�B. We show that if A is an EDM and U is symmetric, then
A⊗ U is an EDM if and only if U = cJn for some c. It is shown that for EDMs A
and B, A�B is spherical if and only if both A and B are spherical. If A and B are
EDMs, then we derive expressions for the rank and the Moore-Penrose inverse of
A�B. In the final section we consider the product A�B for arbitrary matrices. For
A ∈ R

m×m, B ∈ R
n×n, we show that all nonzero minors of A�B of order m+n− 1

are equal. An explicit formula for a nonzero minor of order m+n−1 is proved. The
result is shown to generalize the familiar fact that the determinant of the distance
matrix of a tree on n vertices does not depend on the tree and is a function only of
n.
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1 Introduction

Let Rn×n denote the set of real n × n matrices. If A ∈ R
m×m and B ∈ R

n×n, we define
the product A�B as

A�B = A⊗ Jn + Jm ⊗ B,

where ⊗ denotes the Kronecker product and Jn is the n×n matrix of all ones. We refer to
this product as the Cartesian product of A and B, since it is related to Cartesian product
of graphs as we will see shortly.

The Cartesian product is associative, that is, for A ∈ R
m×m, B ∈ R

n×n and C ∈ R
p×p,

it holds that
(A�B)�C = A�(B�C).
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