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Abstract

In this paper, we obtain an inequality for unitarily invariant norms which unifies the arithmetic-
geometric mean inequality and the Hölder inequality for unitarily invariant norms.
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1. Introduction

Let Mn be the space of n × n complex matrices. Let s1 (A) ≥ · · · ≥ sn (A) ≥ 0 be the singular
values of A ∈ Mn. Let ‖·‖ denote any unitarily invariant norm on Mn. If all the eigenvalues of
A ∈ Mn are real, then we label them as λ1 (A) ≥ · · · ≥ λn (A).

Let A, B ∈ Mn. Thirty years ago, Bhatia and Kittaneh [11] proved an arithmetic-geometric
mean inequality for singular values

s j (A∗B) ≤ s j (AA∗ + BB∗) , j = 1, · · · , n,
which implies

‖A∗B‖ ≤ 1
2
‖AA∗ + BB∗‖ . (1.1)

This is the arithmetic-geometric mean inequality for unitarily invariant norms.
Let A, X, B ∈ Mn. Bhatia and Davis proved in [9] that

‖A∗XB‖ ≤ 1
2
‖AA∗X + XBB∗‖ . (1.2)

which is a generalization of (1.1). As pointed out in [10], the insertion of X is no idle general-
ization, a judicious choice can lead to powerful perturbation theorems.

After that, many authors discussed different proofs, equivalent statements, generalizations,
refinements, and applications of inequalities (1.1) and (1.2). For more information on this topic,
the reader is referred to [12, 15] and the references therein.
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