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policy.

A question at the intersection of scientific modeling and public choice is how to deal with uncertainty
about model predictions. This “high-level” uncertainty is necessarily value-laden, and thus must be
treated as irreducibly subjective. Nevertheless, formal methods of uncertainty analysis should still be
employed for the purpose of clarifying policy debates. I argue that such debates are best informed by
models which integrate objective features (which model the world) with subjective ones (modeling the
policy-maker). This integrated subjectivism is illustrated with a case study from the literature on
monetary policy. The paper concludes with some morals for the use of models in determining climate
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1. Introduction

A question at the intersection of scientific modeling and public
choice is how to deal with uncertainty about model predictions.
This “high-level” uncertainty appears to be qualitatively different
from the “low-level” uncertainties which occur during model
construction. Low-level uncertainties may be reduced systemati-
cally through further measurement or experimentation. In contrast,
there is no widespread agreement on a systematic procedure for
reducing high-level uncertainty. Yet it is model predictions which
are relevant for policy choice, and thus a realistic recommendation
for the use of scientific models to inform policy must address the
fact of high-level uncertainty.

I argue that high-level uncertainty, as well as other values
critical for policy choice, should be treated as irreducibly “subjec-
tive.” I use this term primarily to indicate properties of a subject,
e.g. a scientist or policy-maker, in contrast to “objective,” or
subject-independent, properties of the world. The point of

E-mail address: a.m.c.isaac@ed.ac.uk.

http://dx.doi.org/10.1016/j.shpsa.2014.05.004
0039-3681/© 2014 Elsevier Ltd. All rights reserved.

emphasizing that high-level uncertainty is always subjective in this
sense is to counterbalance a widespread misconception that typical
representations of scientific uncertainty are insulated from
contentious value judgments. When policy decisions must be made
under conditions of scientific disagreement, this misconception
motivates a spurious argument from the lack of scientific consensus
to the impossibility of quantifying uncertainty and applying formal
decision rules. I defend decision theory in this context, in contrast
with those who take such high-level uncertainties to defeat formal
methods, for instance proponents of the precautionary principle.
Integrated subjectivism is the view that, in order to inform policy
choice, a scientific model should be converted to a decision-
theoretic one by supplementing it with parameters which repre-
sent relevant subjective properties of the policy-maker, e.g. her
utility function, priors, or risk aversion. This strategy integrates
subjective features into a model which may be interpreted as
otherwise objective. | motivate this view with an example from the
literature on optimal monetary policy. This example illustrates how
including more of a scientific model in the decision-making process
than just a probability distribution over outcomes can both
constrain rational policy in novel ways and make explicit the loci of
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disagreement in policy debates. This possibility mitigates to some
extent worries about the irreducibly subjective nature of high-level
uncertainty when it plays a role in public choice. The paper con-
cludes with some remarks on the application of these ideas to the
current debate on climate policy.

2. High-level uncertainty

Not all “uncertainty” exhibits the same qualitative features.
Agreement about how to represent and reduce uncertainty will
differ depending upon both the source of the uncertainty and its
consequences for prospective action.

For instance, the treatment of uncertainty about the parameter
values used when constructing a model appears straightforward:
we represent it with error bars, the standard deviation, or some
other descriptive statistical technique. This “low-level” uncertainty
is typically just variance in the data, and can be reduced by making
more measurements, developing more precise measurement pro-
cedures, running additional experiments, etc.! Suppose two ecol-
ogists modeling the growth of the invasive cane toad (Bufo marinus)
population in Australia disagree about the cane toad birth rate, one
of the parameters in the model. Despite disagreement about
parameter value, they nevertheless agree on the types of evidence
relevant for resolving that disagreement, e.g. additional observa-
tions of cane toad breeding in the wild, collection of data on similar
toads, experiments on cane toad breeding in various controlled test
conditions, etc. Consequently, each modeler knows the actions
relevant for convincing her colleague, and, as evidence accrues,
their views should eventually converge on a single value.

The treatment of uncertainty about the predictions of complex
models appears much more problematic. This “high-level” uncer-
tainty derives from a heterogenous set of methodological choices
made by the modeler concerning relevance and idealization. For
instance, when building a model of the spread of cane toads
throughout Australia, one must decide which parameters to include
(predation? rainfall? pond size?) as well as the degree of spatial and
temporal granularity of the model (should it partition the continent
into square miles? square 100 miles? square feet?). Even the in-
clusion of “obviously” relevant parameters may be questioned (e.g.
Kearney et al., 2008, model the future distribution of cane toads
across the continent without including a parameter for the current
data on cane toad location, an intuitively relevant value and one
typically included in other models).

The question of which parameters are relevant for a model is a
specific facet of the more general point that models typically
idealize, abstract from, distort, or at least simplify the target system
they are intended to represent.” Modelers who identify different
features of the target system as relevant are idealizing differently,

! Some parameters cannot be measured directly. Nevertheless, uncertainty about
their values can still be reduced by established techniques, for instance statistical
estimation. Parker (2010) argues there are cases in which the “best” value to use for
a parameter may differ from our best estimate of the quantity it represents—for
instance, if deviation from the parameter’s presumed “true” value corrects for
imperfections in other parts of the model, improving overall performance (990). In
this case, the uncertainty at issue is not about the value of the parameter per se, but
about the rest of the model, and the pragmatic trade-offs required to improve it.

2 This is a general feature of scientific inquiry: we understand some aspect of
nature by crystallizing out an efficient description of it, for instance in terms of the
laws which govern it. A complete and uncondensed representation of nature would
be as useless as Borges’ map the size of the territory. Although I focus here on models
in particular in order to make contact with some specific examples, the consider-
ations raised in this article should apply equally to the use of any aspect of scientific
theory in policy decisions. (For an introduction to abstraction, idealization, and
distortion in models, see for instance Morgan & Morrison, 1999, esp. chap. 2; or
Weisberg, 2013, chap. 6.)

yet there is no consensus theory for evaluating the relative merits
of these choices. In the context of “pure” inquiry, long-term
empirical success will eventually resolve disagreements about
model idealization, but in the context of policy choice, the luxury of
waiting for long-term success is typically not available.

Consider, for example, two hypothetical models of cane toad
territory expansion. They include some of the same parameters,
representing rough geographical features of Australia, yet they
calculate changes in cane toad distribution using very different
methods. The first is built by a statistician and relies on analysis of
trends in past toad movements to predict future cane toad distri-
bution. The second is built by a biologist and relies on an analysis of
the cane toad’s physiological and behavioral traits (leap length,
daily period of activity, etc.) for generating its predictions. These
two models exhibit different virtues. The first can reproduce past
data, “predicting” the current distribution of cane toads when fed
only their initial location upon introduction in 1935; the second is
unable to reproduce this data, but has the virtue of accurately
capturing the presumed mechanism of cane toad migration. If our
interest in the question of cane toad distribution is purely “aca-
demic,” we may tweak and improve these models gradually as we
observe actual cane toad spread.

In contrast, if our intent is to make a policy decision, say, how
much to spend on culling cane toads this year, then we don’t have
the luxury of waiting for long-term success. We need a method for
evaluating now the predictions made by each model when they
differ on some relevant issue, say, whether or not cane toads will
reach Perth if left unchecked. Which virtue should we weigh more:
success in reproducing past data or plausibility of mechanism?
There is no consensus answer to this question, nor general theory
for how to rank the importance of other scientific virtues such as
elegance, precision, accuracy, or generality when weighing the
merits of incompatible models. Although this example is artificial,
itillustrates a general property of time-sensitive model evaluation:
it is irreducibly value-laden.

High-level uncertainty is qualitatively different from low-level
uncertainty in that there is no consensus on how to represent or
reduce it. This is a consequence of the fact that model construction
involves trade-offs between competing scientific values (Levins,
1966). Even when a modeling subcommunity exhibits de facto
agreement over which trade-offs should be made, this “value
consensus” does not translate into consensus on how to reduce
uncertainty over model predictions. Furthermore, such localized
consensus can be misleading, blinding modelers to the substantive
contribution made by implicit value choices to overall uncertainty.
Arguably, this is the situation in climate science, where the com-
munity has chosen to focus on large models of the physical
mechanisms of climate, rather than the kind of simple, general
models of relations between specific quantities popular in other
sciences of complex systems, such as economics or ecology. The
point is not that climate science should emulate economics, but
rather that the choice to focus on models of a particular type is itself
made under conditions of uncertainty, and thus a substantive, yet
easily overlooked, contributor to high-level uncertainty.

3 Levins (1966) argued that models can result in scientific knowledge, despite
trade-offs amongst conflicting values, if they produce results which are robust, i.e.
obtain across a variety of different simplifying assumptions (423)—in our termi-
nology, high-level uncertainty is reduced when models that prioritize different
values agree. This notion of robustness is radically stronger than the kind of
robustness on which climate science has focused, i.e. invariant results across
changes in parameter value, or across models based on the same commitment to
physical mechanism, but with slight differences in implementation (c.f. Parker,
2011).
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