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a b s t r a c t

Recently, Roger Colbeck and Renato Renner (C&R) have claimed that ‘[n]o extension of quantum theory
can have improved predictive power’ (Colbeck & Renner, 2011, 2012b). If correct, this is a spectacular
impossibility theorem for hidden variable theories, which is more general than the theorems of Bell
(1964) and Leggett (2003). Also, C&R have used their claim in attempt to prove that a system's quantum-
mechanical wave function is in a one-to-one correspondence with its ‘ontic’ state (Colbeck & Renner,
2012a). C&R's claim essentially means that in any hidden variable theory that is compatible with
quantum-mechanical predictions, probabilities of measurement outcomes are independent of these
hidden variables. This makes such variables otiose. On closer inspection, however, the generality and
validity of the claim can be contested. First, it is based on an assumption called ‘Freedom of Choice’. As
the name suggests, this assumption involves the independence of an experimenter's choice of mea-
surement settings. But in the way C&R define this assumption, a no-signalling condition is surreptitiously
presupposed, making the assumption less innocent than it sounds. When using this definition, any
hidden variable theory violating parameter independence, such as Bohmian Mechanics, is immediately
shown to be incompatible with quantum-mechanical predictions. Also, the argument of C&R is hard to
follow and their mathematical derivation contains several gaps, some of which cannot be closed in the
way they suggest. We shall show that these gaps can be filled. The issue with the ‘Freedom of Choice’
assumption can be circumvented by explicitly assuming parameter independence. This makes the result
less general, but better founded. We then obtain an impossibility theorem for hidden variable theories
satisfying parameter independence only. As stated above, such hidden variable theories are impossible in
the sense that any supplemental variables have no bearing on outcome probabilities, and are therefore
trivial. So, while quantum mechanics itself satisfies parameter independence, if a variable is added that
changes the outcome probabilities, however slightly, parameter independence must be violated.
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1. Introduction

In 1935, Einstein, Podolsky and Rosen famously argued that
quantum mechanics is incomplete and that there might be
another theory that does provide a complete description of phy-
sical reality (Einstein et al., 1935). One class of candidates for such
a theory is the class of so-called ‘hidden variable theories’, which
supplement the quantum state with extra variables.1 Hidden

variable theories have indeed been developed, for example the de
Broglie–Bohm theory (Bohm, 1952), which is deterministic and
complete in Einstein's sense. However, a number of impossibility
theorems have been derived, showing that large classes of possible
hidden variable theories are incompatible with quantum-
mechanical predictions. John Bell proved such incompatibility for
local deterministic hidden variable theories (Bell, 1964), as well as
for local stochastic hidden variable theories (Bell, 2004), while
the incompatibility of ‘crypto-nonlocal’ theories was proven by
Leggett (2003). Still, a large class of hidden variable theories, like
the de Broglie–Bohm theory, remains unscathed by these impos-
sibility theorems.
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to refer only to deterministic theories. Instead, we have a very general use of the
term in mind: theories that add, in addition to the quantum state, an extra variable
to the description of a system.
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The hidden variable theories shown to be incompatible by Bell
are theories satisfying a criterion called Factorizability (Fine, 1982),
which is equivalent to the conjunction of two locality conditions
coined by Shimony (1984): parameter independence (ParInd) and
outcome independence (OutInd). Therefore, any hidden variable
theory compatible with quantum mechanics violates at least one
of these two conditions. In this article we claim something
stronger: any hidden variable theory compatible with quantum
mechanics violates ParInd, except for ‘trivial’ hidden variable
theories, where the values of the hidden variables have no bearing
on measurement outcome probabilities.

This article is based on recent work by Roger Colbeck and
Renato Renner (C&R), who have claimed that they have derived an
even more general impossibility theorem (Colbeck & Renner, 2011,
2012b). Stating that ‘[n]o extension of quantum theory can have
improved predictive power’, they essentially claim that any non-
trivial hidden variable theory, also if it violates ParInd (like the de
Broglie-Bohm theory), is incompatible with quantum-mechanical
predictions. Given the wide scope of this claim, this would be a
spectacular result, which would to a great extent put constraints
on any possible future theory replacing quantum mechanics.

However, C&R's claim crucially hinges on an assumption dub-
bed ‘Freedom of Choice’. As the name suggests, this assumption is
meant to be about the freedom of experimenters to choose their
measurement settings. From this assumption, C&R derive ‘no-sig-
nalling’, which is essentially equal to ParInd. Nevertheless, when
inspecting the way ‘Freedom of Choice’ is defined, it becomes
apparent that ParInd is in fact part of this assumption. Most cri-
ticism of C&R's work focuses on this issue (Colbeck & Renner, 2013;
Ghirardi & Romano, 2013a, 2013; Leifer, 2014; Landsman, 2015).
We agree with the criticism: C&R's ‘Freedom of Choice’ assumption
is much stronger than its name suggests. Therefore, while the
impression is given that any hidden variable theory with free
experimenters is shown to be incompatible with QM, in fact their
result applies to a smaller class of hidden variable theories: those
satisfying ParInd. The de Broglie–Bohm theory, which violates
ParInd, is therefore not shown to be incompatible after all.

If the above issue was the only problem with C&R's work, the
result of the present article could easily be achieved by adding
ParInd as an explicit assumption. The theorem would then still be
an interesting impossibility theorem, being more general than the
theorems of Bell and Leggett. However, there are more short-
comings in the work of C&R. First, it is hard to understand, even for
experts. Scarani (2013) says:

‘Beyond the case of the maximally entangled state, which had
been settled in a previous paper, they prove something that I
honestly have not fully understood. Indeed, so many other
colleagues have misunderstood this work, that the authors
prepared a page of FAQs [Colbeck, 2010] (extremely rare for a
scientific paper) and a later, clearer version [Colbeck and
Renner, 2012b].’

The case of the maximally entangled state that Scarani refers to
corresponds to the triviality claim of C&R restricted to local mea-
surements on a Bell state. This result consists of the statement that
not only the quantum-mechanical outcome probabilities, but also
the outcome probabilities in any hidden variable theory equal 1/2
(in the present paper, this result is presented in Section 4). Some
authors, for example Di Lorenzo (2012), appear to have understood
C&R as deriving only this result, which, as Scarani alludes to, had
been derived before. Actually, for C&R this is only the first step in
proving the more general theorem that probabilities in hidden
variable theories are always equal to the quantum-mechanical
probabilities.

More importantly, C&R's derivation contains gaps, of which
some are allegedly filled in other publications, while others
remain. One example is their careless handling of limits: in more
than one occasion results are derived that only hold approxi-
mately, which are then used as if they hold exactly.2

Because of these shortcomings, at present no acceptable
deduction of the impossibility theorem for hidden variable the-
ories satisfying ParInd exists in the literature. In this article we
attempt to repair the shortcomings of C&R's derivation in order to
establish such a deduction. A step that is not explicitly mentioned
by C&R, involving the relation between measurements on entan-
gled states and measurements on non-entangled states, is for-
mulated explicitly. Furthermore, we give a deduction that is
mathematically acceptable. We emphasize that this does not
consist of simply filling some gaps. For some parts of the deduc-
tion to succeed, an entirely new strategy has to be constructed, or
so we claim. This is especially the case when taking proper care of
all the limits used in the proof. Also, some parts of the deduction
can, in our opinion, be considerably simplified, especially the first
steps. For these reasons, in this article we do not merely point out
all the shortcomings in the original derivation; rather, we con-
struct a new version of it.

C&R have also used their claim in an attempt to answer the
question whether the quantum-mechanical wave function is
‘ontic’ or ‘epistemic’. Since the appearance of the Pusey–Barret–
Rudulph (PBR) theorem (Pusey et al., 2012), this is a hotly debated
topic. On the basis of their claim, C&R argue not only that the wave
function is ontic, but also that it is in a one-to-one correspondence
with its ontic state (Colbeck & Renner, 2012a). In the Discussion
(Section 9), we shall consider what remains of this ψ-ontology
result if C&R's claim is replaced by the weaker result deduced in
this article.

The result will be deduced in several steps. The first steps are
quite simple and correspond to results that existed already before
the work of C&R. However, we believe that even for those whom
are already familiar with this result, these steps are still of value
since they are considerably simplified, only using a triangle
inequality and a simple inequality from probability theory. The
final steps require more mathematics and may be harder to follow.
Most of the mathematics is relegated to appendices, so as not to
distract the reader from the central line of reasoning. If the reader
want to shorten the reading time, the best section to skip might be
Section 7, because the extent of the generalization (from states
with coefficients that are square roots of rational numbers to any
coefficients) is relatively small compared to the amount of
mathematics needed. It is however a necessary part for deriving
the full theoretical result. In the Discussion, I shall mention the
most important differences between our deduction and that of
C&R.

2. Notation

Quantum-mechanical systems are referred to by the symbols
A;B;A0;B0, etc. To denote composite systems, the symbols for the
subsystems are combined, for example AB and AA0A00. The Hilbert
space of system A is denoted byHA, a state as jψ 〉A and an operator
on HA as UA. For notational convenience, the subscript attached to
a state may be omitted when no confusion is possible, especially
when large composite systems like AA0A00BB0B00 are involved. The
symbol � for taking tensor products is also often omitted, and we
freely change the order of states when combining systems, so that

2 Section 9 contains a more detailed treatment of these gaps.

G. Leegwater / Studies in History and Philosophy of Modern Physics 54 (2016) 18–34 19



Download English Version:

https://daneshyari.com/en/article/1161096

Download Persian Version:

https://daneshyari.com/article/1161096

Daneshyari.com

https://daneshyari.com/en/article/1161096
https://daneshyari.com/article/1161096
https://daneshyari.com

